SEEPAGE PROPERTIES OF ROCK FRACTURES WITH POWER LAW LENGTH DISTRIBUTIONS

Fractals ◽  
2019 ◽  
Vol 27 (04) ◽  
pp. 1950057 ◽  
Author(s):  
TONGJUN MIAO ◽  
SUJUN CHENG ◽  
AIMIN CHEN ◽  
YAN XU ◽  
GUANG YANG ◽  
...  

Fractures with power law length distributions abound in nature such as carbonate oil and gas reservoirs, sandstone, hot dry rocks, etc. The fluid transport properties and morphology characterization of fracture networks have fascinated numerous researchers to investigate for several decades. In this work, the analytical models for fracture density and permeability are extended from fractal fracture network to general fracture network with power law length distributions. It is found that the fracture density is related to the power law exponents [Formula: see text] and the area porosity [Formula: see text] of fracture network. Then, a permeability model for the fracture length distribution with general power law exponent [Formula: see text] and the power law exponent [Formula: see text] for fracture length versus aperture is proposed based on the well-known cubic law in individual fracture. The analytical expression for permeability of fractured networks is found to be a function of power law exponents [Formula: see text], area porosity [Formula: see text] of fracture network, and the micro-structural parameters (maximum fracture length [Formula: see text], fracture azimuth [Formula: see text] and fracture dip angle [Formula: see text]). The present model may shed light on the mechanism of seepage in fracture networks with power law length distributions.

Fractals ◽  
2021 ◽  
pp. 2150140
Author(s):  
GUANNAN LIU ◽  
YUHAO HU ◽  
BOMING YU ◽  
FENG GAO ◽  
FENGTIAN YUE ◽  
...  

In the process of gas mining, the fracture distribution with power law length and the pore structure with adsorption effect have an important influence on the coal seam permeability. In recent years, the research on the internal structure of coal seam and the fluid flow mechanism has attracted a large number of researchers. In this paper, by considering the coal matrix deformation caused by adsorption, a pore-fracture model coupled with the multi-field effects and with power law length distribution of fractures in coal seam is established based on the fractal theory for porous media. In this work, we study the influences of the power law exponent [Formula: see text] of fracture length and the ratio [Formula: see text] of the minimum to maximum fracture lengths on the permeability of coal seam and the evolution mechanism of permeability with the structural and mechanical parameters of coal seam. It is found that the permeability of coal seam is inversely proportional to [Formula: see text], directly proportional to [Formula: see text], and to Langmuir volume constant and Langmuir volume strain constant. Compared with other factors, the power law component [Formula: see text] of fractures has the most significant effect on the coal seam permeability.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Tao Chen

Equivalent fracture models are widely used for simulations of groundwater exploitation, geothermal reservoir production, and solute transport in groundwater systems. Equivalent permeability has a great impact on such processes. In this study, equivalent permeability distributions are investigated based on a state-of-the-art numerical upscaling method (i.e., the multiple boundary method) for fractured porous rocks. An ensemble of discrete fracture models is created based on power law length distributions. The equivalent permeability is upscaled from discrete fracture models based on the multiple boundary method. The results show that the statistical distributions of equivalent permeability tensor components are highly related to fracture geometry and differ from each other. For the histograms of the equivalent permeability, the shapes of k x x and k y y change from a power law-like distribution to a lognormal-like distribution when the fracture length and the number of fractures increase. For the off-diagonal component k x y , it is a normal-like distribution and its range expands when the fracture length and the number of fractures increase. The mean of diagonal equivalent permeability tensor components increases linearly with the fracture density. The analysis helps in generating stochastic equivalent permeability models in fractured porous rocks and reduces uncertainties when applying equivalent fracture models.


2020 ◽  
Vol 10 (11) ◽  
pp. 3864 ◽  
Author(s):  
Umar Ashraf ◽  
Hucai Zhang ◽  
Aqsa Anees ◽  
Hassan Nasir Mangi ◽  
Muhammad Ali ◽  
...  

The identification of small scale faults (SSFs) and fractures provides an improved understanding of geologic structural features and can be exploited for future drilling prospects. Conventional SSF and fracture characterization are challenging and time-consuming. Thus, the current study was conducted with the following aims: (a) to provide an effective way of utilizing the seismic data in the absence of image logs and cores for characterizing SSFs and fractures; (b) to present an unconventional way of data conditioning using geostatistical and structural filtering; (c) to provide an advanced workflow through multi-attributes, neural networks, and ant-colony optimization (ACO) for the recognition of fracture networks; and (d) to identify the fault and fracture orientation parameters within the study area. Initially, a steering cube was generated, and a dip-steered median filter (DSMF), a dip-steered diffusion filter (DSDF), and a fault enhancement filter (FEF) were applied to sharpen the discontinuities. Multiple structural attributes were applied and shortlisted, including dip and curvature attributes, filtered and unfiltered similarity attributes, thinned fault likelihood (TFL), fracture density, and fracture proximity. These shortlisted attributes were computed through unsupervised vector quantization (UVQ) neural networks. The results of the UVQ revealed the orientations, locations, and extensions of fractures in the study area. The ACO proved helpful in identifying the fracture parameters such as fracture length, dip angle, azimuth, and surface area. The adopted workflow also revealed a small scale fault which had an NNW–SSE orientation with minor heave and throw. The implemented workflow of structural interpretation is helpful for the field development of the study area and can be applied worldwide in carbonate, sand, coal, and shale gas fields.


2018 ◽  
Vol 36 (6) ◽  
pp. 1556-1565 ◽  
Author(s):  
Chunyan Jiao ◽  
Yong Hu ◽  
Xuan Xu ◽  
Xiaobing Lu ◽  
Weijun Shen ◽  
...  

Reservoir quality and productivity of fractured gas reservoirs depend heavily on the degree of fracture development. The fracture evaluation of such reservoir media is the key to quantify reservoir characterization for the purposes such as well drilling and completion as well as development and simulation of fractured gas reservoirs. In this study, a pore-fracture network model was constructed to understand the effects of fracture on permeability in the reservoir media. The microstructure parameters of fractures including fracture length, fracture density, fracture number, and fracture radius were analyzed. Then two modes and effects of matrix and fracture network control were discussed. The results indicate that the network permeability in the fractured reservoir media will increase linearly with fracture length, fracture density, fracture number, and fracture radius. When the fracture radius exceeds 80 µm, the fracture radius has a little effect on network permeability. Within the fracture density less than 0.55, it belongs to the matrix control mode, while the fracture network control mode is dominant in the fracture density exceeding 0.55. The network permeability in the matrix and fracture network control modes is affected by fracture density and the ratio of fracture radius to pore radius. There is a great change in the critical density for the matrix network control compared with the fracture network control. This work can provide a better understanding of the relationship between matrix and fractures, and the effects of fracture on permeability so as to evaluate the fluid flow in the fractured reservoir media.


SPE Journal ◽  
2008 ◽  
Vol 13 (01) ◽  
pp. 88-98 ◽  
Author(s):  
Mohsen Masihi ◽  
Peter R. King ◽  
Peyman R. Nurafza

Summary Uncertainty in geometrical properties of fractures, when they are considered as the conductive paths for flow movement, affects all aspects of flow in fractured reservoirs. The connectivity of fractures, embedded in low-permeability zones, can control fluid movement and influence field performance. This can be analyzed using percolation theory. This approach uses the hypothesis that the permeability map can be split into either permeable (i.e., fracture) or impermeable (i.e., matrix) portions and assumes that the connectivity of fractures controls the flow. The analysis of the connectivity based on finite-size scaling assumes that fractures all have the same sizes. However, natural fracture networks involve a relatively wide range of fracture lengths, modeled by either scale-limited laws (e.g., log normal) or power laws. In this paper, we extend the applicability of the percolation approach to a system with a distribution of size. For scale-limited distributions, we use the hypothesis seen in the literature that the connectivity of fractures of variable size is identical to the connectivity of fractures of the same size whose length is given by an appropriate effective length. It is then necessary to define the percolation probability based on the excluded area arguments. In this research work, we also validate the applicability of this idea to fracture networks having a uniform, Gaussian, exponential, and log-normal length distribution. However, in the case of the power-law length distribution, we have found that the scaling parameters (e.g., correlation length exponent) have to be modified. The main contribution is to show how the critical exponents vary as a function of the power-law exponent. To validate the approach, we used outcrop data of mineralized fractures (vein sets) exposed on the southern margin of the Bristol Channel basin. We show that the predictions from the percolation approach are in good agreement with the results calculated from field data with the advantage that they can be obtained very quickly. As a result, they may be used for practical engineering purposes and may aid decision-making for real field problem. Introduction Many hydrocarbon reservoirs are naturally fractured. The conventional approach to investigate the impact of geological uncertainties on reservoir performance is to build a detailed reservoir model using available geophysical and geological data, upscale it, and then perform flow simulation. In fractured reservoirs, this can be done by using equivalent continuum models (i.e., dual porosity), discrete network models, or a combination of both [see Warren and Root (1963), Quenes and Hartley (2000), and Dershowitz et al. (2000)]. The nature of fluid flow in fractured reservoirs of low matrix permeability depends strongly on the spatial distribution of the conductive natural fractures. We use the term "fracture" to mean any discontinuity within a rock mass that developed as a response to stress. Fractures exist on various length scales from microns to kilometres. They appear as tensile (e.g., joints or veins) or shear (e.g., faults) and can act as hydraulic conductors or barriers to flow movement. Conductive fractures may be connected in a complicated manner to form a complex network. The connectivity of such networks is a crucial parameter in controlling flow movement, which in turn depends on the geometrical properties of the network such as fracture orientation, spacing, or length distribution.


2019 ◽  
Vol 49 ◽  
pp. 77-83 ◽  
Author(s):  
Etienne Lavoine ◽  
Philippe Davy ◽  
Caroline Darcel ◽  
Romain Le Goc

Abstract. This paper presents analytical solutions to estimate at any scale the fracture density variability associated to stochastic Discrete Fracture Networks. These analytical solutions are based upon the assumption that each fracture in the network is an independent event. Analytical solutions are developed for any kind of fracture density indicators. Those analytical solutions are verified by numerical computing of the fracture density variability in three-dimensional stochastic Discrete Fracture Network (DFN) models following various orientation and size distributions, including the heavy-tailed power-law fracture size distribution. We show that this variability is dependent on the fracture size distribution and the measurement scale, but not on the orientation distribution. We also show that for networks following power-law size distribution, the scaling of the three-dimensional fracture density variability clearly depends on the power-law exponent.


2021 ◽  
Vol 11 (2) ◽  
pp. 839-856
Author(s):  
Erfan Hosseini ◽  
Mohammad Sarmadivaleh ◽  
Zhongwei Chen

AbstractThe role of natural fractures in future reservoir performance is prominent. The fractured porous media is composed of an interconnected network of fractures and blocks of the porous medium where fractures occur in various scales and have a strong influence either when most of the flow is concentrated and them or when they act as barriers. A general numerical model for discrete fracture networks (DFN) is usually employed to handle the observed wide variety of fracture properties and the lack of direct fracture visualization. These models generally use fracture properties’ stochastic distribution based on sparse and seismic data without any physical model constraint. Alternatively, a DFN model includes usual numerical geomechanical approaches like boundary element and finite element. But here, a geostatistical methodology has been used to generate a DFN model. In this paper, an alternative modeling technique is employed to create the realization of an anisotropic fractured rock using simulated annealing (SA) optimization algorithm. There is a notable positive correlation between fracture length and position. There are three principal subjects in a study of fractured rocks. Firstly, the network’s connectivity, secondly, fluid flows through the system, and thirdly, dispersion. Here, connectivity of generated networks is considered. Continuum percolation is the mathematical model to study the geometry of connected components in a random subset of space. Different random realizations from the S.A. algorithm in four different sizes of L = 100, 150, 200, 250 at post-threshold condition are used as disordered media in percolation theory to compute percolation properties using Monte Carlo simulation. The percolation threshold (critical fracture density) and two crucial scaling exponents (β and υ) that dictate the model’s connectivity behavior are estimated to over 200 realizations.


Solid Earth ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 1731-1746
Author(s):  
Romesh Palamakumbura ◽  
Maarten Krabbendam ◽  
Katie Whitbread ◽  
Christian Arnhardt

Abstract. Understanding the impact of fracture networks on rock mass properties is an essential part of a wide range of applications in geosciences from understanding permeability of groundwater aquifers and hydrocarbon reservoirs to erodibility properties and slope stability of rock masses for geotechnical engineering. However, gathering high-quality, oriented-fracture datasets in the field can be difficult and time-consuming, for example, due to constraints on field work time or access (e.g. cliffs). Therefore, a method for obtaining accurate, quantitative fracture data from photographs is a significant benefit. In this paper we describe a method for generating a series of digital fracture traces in a geographic information system (GIS) environment, in which spatial analysis of a fracture network can be carried out. The method is not meant to replace the gathering of data in the field but to be used in conjunction with it, and it is well suited when field work time is limited or when the section cannot be accessed directly. The basis of the method is the generation of the vector dataset (shapefile) of a fracture network from a georeferenced photograph of an outcrop in a GIS environment. From that shapefile, key parameters such as fracture density and orientation can be calculated. Furthermore, in the GIS environment more complex spatial calculations and graphical plots can be carried out such as heat maps of fracture density. Advantages and limitations compared to other fracture network capture methods are discussed.


Solid Earth ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 2119-2140
Author(s):  
Billy James Andrews ◽  
Zoe Kai Shipton ◽  
Richard Lord ◽  
Lucy McKay

Abstract. Fault architecture and fracture network evolution (and resulting bulk hydraulic properties) are highly dependent on the mechanical properties of the rocks at the time the structures developed. This paper investigates the role of mechanical layering and pre-existing structures on the evolution of strike–slip faults and fracture networks. Detailed mapping of exceptionally well exposed fluvial–deltaic lithologies at Spireslack Surface Coal Mine, Scotland, reveals two phases of faulting with an initial sinistral and later dextral sense of shear with ongoing pre-faulting, syn-faulting, and post-faulting joint sets. We find fault zone internal structure depends on whether the fault is self-juxtaposing or cuts multiple lithologies, the presence of shale layers that promote bed-rotation and fault-core lens formation, and the orientation of joints and coal cleats at the time of faulting. During ongoing deformation, cementation of fractures is concentrated where the fracture network is most connected. This leads to the counter-intuitive result that the highest-fracture-density part of the network often has the lowest open fracture connectivity. To evaluate the final bulk hydraulic properties of a deformed rock mass, it is crucial to appreciate the relative timing of deformation events, concurrent or subsequent cementation, and the interlinked effects on overall network connectivity.


Sign in / Sign up

Export Citation Format

Share Document