Exploring the performance–power–energy balance of low-power multicore and manycore architectures for anomaly detection in remote sensing

2014 ◽  
Vol 71 (5) ◽  
pp. 1893-1906 ◽  
Author(s):  
G. León ◽  
J. M. Molero ◽  
E. M. Garzón ◽  
I. García ◽  
A. Plaza ◽  
...  
IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 58478-58486
Author(s):  
Ronald P. Jenkins ◽  
Micah D. Gregory ◽  
Len Cardillo ◽  
Benjamin R. Bunes ◽  
Sawyer D. Campbell ◽  
...  

2021 ◽  
Vol 58 (03) ◽  
pp. 274-285
Author(s):  
H. V. Parmar ◽  
N. K. Gontia

Remote sensing based various land surface and bio-physical variables like Normalized Difference Vegetation Index (NDVI), Land Surface Temperature (LST), surface albedo, transmittance and surface emissivity are useful for the estimation of spatio-temporal variations in evapotranspiration (ET) using Surface Energy Balance Algorithm for Land (SEBAL) method. These variables were estimated under the present study for Ozat-II canal command in Junagadh district, Gujarat, India, using Landsat-7 and Landsat-8 images of summer season of years 2014 and 2015. The derived parameters were used in SEBAL to estimate the Actual Evapotranspiration (AET) of groundnut and sesame crops. The lower values NDVI observed during initial (March) and end (May) stages of crop growth indicated low vegetation cover during these periods. With full canopy coverage of the crops, higher value of NDVI (0.90) was observed during the mid-crop growth stage. The remote sensing-based LST was lower for agricultural areas and the area near banks of the canal and Ozat River, while higher surface temperatures were observed for rural settlements, road and areas with exposed dry soil. The maximum surface temperatures in the cropland were observed as 311.0 K during March 25, 2014 and 315.8 K during May 31, 2015. The AET of summer groundnut increased from 3.75 to 7.38 mm.day-1, and then decreased to 3.99 mm.day-1 towards the end stage of crop growth. The daily AET of summer sesame ranged from 1.06 to 7.72 mm.day-1 over different crop growth stages. The seasonal AET of groundnut and sesame worked out to 358.19 mm and 346.31 mm, respectively. The estimated AET would be helpful to schedule irrigation in the large canal command.


2021 ◽  
Author(s):  
Yung-Ting Hsieh ◽  
Khizar Anjum ◽  
Songjun Huang ◽  
Indraneel Kulkarni ◽  
Dario Pompili

EDIS ◽  
2007 ◽  
Vol 2007 (17) ◽  
Author(s):  
Joaquin Casanova ◽  
Fei Yan ◽  
Mi-young Jang ◽  
Juan Fernandez ◽  
Jasmeet Judge ◽  
...  

Circular 1514, a 47-page illustrated report by Joaquin Casanova, Fei Yan, Mi-young Jang, Juan Fernandez, Jasmeet Judge, Clint Slatton, Kai-Jen Calvin Tien, Tzu-yun Lin, Orlando Lanni, and Larry Miller, presents the results of experiments using microwave remote sensing to determine root-zone soil moisture at UF/IFAS PSREU. Published by the UF Department of Agricultural and Biological Engineering, May 2007. CIR1514/AE407: Field Observations During the Fifth Microwave Water and Energy Balance Experiment: from March 9 through May 26, 2006 (ufl.edu)


2011 ◽  
Vol 11 (18) ◽  
pp. 9485-9501 ◽  
Author(s):  
J. V. Martins ◽  
A. Marshak ◽  
L. A. Remer ◽  
D. Rosenfeld ◽  
Y. J. Kaufman ◽  
...  

Abstract. Cloud-aerosol interaction is a key issue in the climate system, affecting the water cycle, the weather, and the total energy balance including the spatial and temporal distribution of latent heat release. Information on the vertical distribution of cloud droplet microphysics and thermodynamic phase as a function of temperature or height, can be correlated with details of the aerosol field to provide insight on how these particles are affecting cloud properties and their consequences to cloud lifetime, precipitation, water cycle, and general energy balance. Unfortunately, today's experimental methods still lack the observational tools that can characterize the true evolution of the cloud microphysical, spatial and temporal structure in the cloud droplet scale, and then link these characteristics to environmental factors and properties of the cloud condensation nuclei. Here we propose and demonstrate a new experimental approach (the cloud scanner instrument) that provides the microphysical information missed in current experiments and remote sensing options. Cloud scanner measurements can be performed from aircraft, ground, or satellite by scanning the side of the clouds from the base to the top, providing us with the unique opportunity of obtaining snapshots of the cloud droplet microphysical and thermodynamic states as a function of height and brightness temperature in clouds at several development stages. The brightness temperature profile of the cloud side can be directly associated with the thermodynamic phase of the droplets to provide information on the glaciation temperature as a function of different ambient conditions, aerosol concentration, and type. An aircraft prototype of the cloud scanner was built and flew in a field campaign in Brazil. The CLAIM-3D (3-Dimensional Cloud Aerosol Interaction Mission) satellite concept proposed here combines several techniques to simultaneously measure the vertical profile of cloud microphysics, thermodynamic phase, brightness temperature, and aerosol amount and type in the neighborhood of the clouds. The wide wavelength range, and the use of multi-angle polarization measurements proposed for this mission allow us to estimate the availability and characteristics of aerosol particles acting as cloud condensation nuclei, and their effects on the cloud microphysical structure. These results can provide unprecedented details on the response of cloud droplet microphysics to natural and anthropogenic aerosols in the size scale where the interaction really happens.


Sign in / Sign up

Export Citation Format

Share Document