Sodium nitroprusside promotes multiplication and regeneration of Malus hupehensis in vitro plantlets

2008 ◽  
Vol 96 (1) ◽  
pp. 29-34 ◽  
Author(s):  
Xiaojiao Han ◽  
Hongqiang Yang ◽  
Kaixuan Duan ◽  
Xinrong Zhang ◽  
Haizhou Zhao ◽  
...  
2011 ◽  
Vol 37 (1) ◽  
pp. 55-59
Author(s):  
Qing QUAN ◽  
Yong TAO ◽  
Xiao-rong ZHANG ◽  
Gui-dong YAO ◽  
Jin-ju WANG

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3229
Author(s):  
Mat Yunus Najhah ◽  
Hawa Z. E. Jaafar ◽  
Jaafar Juju Nakasha ◽  
Mansor Hakiman

This study aims to investigate whether the in vitro-cultured L. pumila var. alata has higher antioxidant activity than its wild plant. An 8-week-old L. pumila var. alata nodal segment and leaf explants were cultured onto Murashige and Skoog (MS) medium supplemented with various cytokinins (zeatin, kinetin, and 6-benzylaminopurine (BAP)) for shoot multiplication and auxins (2,4-dichlorophenoxyacetic acid (2,4-D) and picloram) for callus induction, respectively. The results showed that 2 mg/L zeatin produced the optimal results for shoot and leaf development, and 0.5 mg/L 2,4-D produced the highest callus induction results (60%). After this, 0.5 mg/L 2,4-D was combined with 0.25 mg/L cytokinins and supplemented to the MS medium. The optimal results for callus induction (100%) with yellowish to greenish and compact texture were obtained using 0.5 mg/L 2,4-D combined with 0.25 mg/L zeatin. Leaves obtained from in vitro plantlets and wild plants as well as callus were extracted and analyzed for their antioxidant activities (DPPH and FRAP methods) and polyphenolic properties (total flavonoid and total phenolic content). When compared with leaf extracts of in vitro plantlets and wild plants of L. pumila var. alata, the callus extract displayed significantly higher antioxidant activities and total phenolic and flavonoid content. Hence, callus culture potentially can be adapted for antioxidant and polyphenolic production to satisfy pharmaceutical and nutraceutical needs while conserving wild L. pumila var. alata.


2021 ◽  
Vol 22 (3) ◽  
pp. 1455
Author(s):  
Varsha Garg ◽  
Aleksandra Hackel ◽  
Christina Kühn

In potato plants, the phloem-mobile miR172 is involved in the sugar-dependent transmission of flower and tuber inducing signal transduction pathways and a clear link between solute transport and the induction of flowering and tuberization was demonstrated. The sucrose transporter StSUT4 seems to play an important role in the photoperiod-dependent triggering of both developmental processes, flowering and tuberization, and the phenotype of StSUT4-inhibited potato plants is reminiscent to miR172 overexpressing plants. The first aim of this study was the determination of the level of miR172 in sink and source leaves of StSUT4-silenced as well as StSUT4-overexpressing plants in comparison to Solanum tuberosum ssp. Andigena wild type plants. The second aim was to investigate the effect of sugars on the level of miRNA172 in whole cut leaves, as well as in whole in vitro plantlets that were supplemented with exogenous sugars. Experiments clearly show a sucrose-dependent induction of the level of mature miR172 in short time as well as long time experiments. A sucrose-dependent accumulation of miR172 was also measured in mature leaves of StSUT4-silenced plants where sucrose export is delayed and sucrose accumulates at the end of the light period.


2011 ◽  
Vol 64 (3) ◽  
pp. 289-297 ◽  
Author(s):  
Raffaella Priora ◽  
Antonios Margaritis ◽  
Simona Frosali ◽  
Lucia Coppo ◽  
Domenico Summa ◽  
...  

2011 ◽  
Vol 110 (3) ◽  
pp. 695-704 ◽  
Author(s):  
Danielle J. McCullough ◽  
Robert T. Davis ◽  
James M. Dominguez ◽  
John N. Stabley ◽  
Christian S. Bruells ◽  
...  

With advancing age, there is a reduction in exercise tolerance, resulting, in part, from a perturbed ability to match O2 delivery to uptake within skeletal muscle. In the spinotrapezius muscle (which is not recruited during incline treadmill running) of aged rats, we tested the hypotheses that exercise training will 1) improve the matching of O2 delivery to O2 uptake, evidenced through improved microvascular Po2 (PmO2), at rest and throughout the contractions transient; and 2) enhance endothelium-dependent vasodilation in first-order arterioles. Young (Y, ∼6 mo) and aged (O, >24 mo) Fischer 344 rats were assigned to control sedentary (YSED; n = 16, and OSED; n = 15) or exercise-trained (YET; n = 14, and OET; n = 13) groups. Spinotrapezius blood flow (via radiolabeled microspheres) was measured at rest and during exercise. Phosphorescence quenching was used to quantify PmO2 in vivo at rest and across the rest-to-twitch contraction (1 Hz, 5 min) transition in the spinotrapezius muscle. In a follow-up study, vasomotor responses to endothelium-dependent (acetylcholine) and -independent (sodium nitroprusside) stimuli were investigated in vitro. Blood flow to the spinotrapezius did not increase above resting values during exercise in either young or aged groups. Exercise training increased the precontraction baseline PmO2 (OET 37.5 ± 3.9 vs. OSED 24.7 ± 3.6 Torr, P < 0.05); the end-contracting PmO2 and the time-delay before PmO2 fell in the aged group but did not affect these values in the young. Exercise training improved maximal vasodilation in aged rats to acetylcholine (OET 62 ± 16 vs. OSED 27 ± 16%) and to sodium nitroprusside in both young and aged rats. Endurance training of aged rats enhances the PmO2 in a nonrecruited skeletal muscle and is associated with improved vascular smooth muscle function. These data support the notion that improvements in vascular function with exercise training are not isolated to the recruited muscle.


2005 ◽  
Vol 41 (1) ◽  
pp. 69-76 ◽  
Author(s):  
Gabriela Fuentes ◽  
Carlos Talavera ◽  
Carlos Oropeza ◽  
Yves Desjardins ◽  
Jorge M. Santamaria

2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Feng-Hua Chen ◽  
Ke Li ◽  
Lu Yin ◽  
Chun-Qiu Chen ◽  
Zhao-Wen Yan ◽  
...  

The intestinal mucosal epithelium is extremely susceptible to even brief periods of ischemia. Mucosal barrier damage, which is associated with ischemia/reperfusion (I/R) injury and consequently bacterial translocation, remains a major obstacle for clinically successful small bowel transplantation (SBT). Previous studies have demonstrated a protective effect of nitric oxide (NO) on other transplanted organs and NO mediated intestinal protection has also been reportedin vitro. The aim of this study was to evaluate the effect of sodium nitroprusside (SNP), NO donor, on graft mucosal histology and molecular markers of function after SBT in rats. We used SNP in different period of heterotopic SBT rats. The groups consisted of SBT, pre-SNP group, and post-SNP group. Interestingly, the pre-SNP graft samples exhibited less damage compared to the SBT and post-SNP samples. In addition, mucosal samples from the pre-SNP group showed higher Na+-K+-ATPase activity and higher levels of laminin expression compared to the SBT and post-SNP samples. The findings of the present study reveal that SNP given before graft ischemia/reperfusion injury has a protective effect on mucosal histology and molecular markers of function in the transplanted small intestine.


Sign in / Sign up

Export Citation Format

Share Document