scholarly journals Expression Level of Mature miR172 in Wild Type and StSUT4-Silenced Plants of Solanum tuberosum Is Sucrose-Dependent

2021 ◽  
Vol 22 (3) ◽  
pp. 1455
Author(s):  
Varsha Garg ◽  
Aleksandra Hackel ◽  
Christina Kühn

In potato plants, the phloem-mobile miR172 is involved in the sugar-dependent transmission of flower and tuber inducing signal transduction pathways and a clear link between solute transport and the induction of flowering and tuberization was demonstrated. The sucrose transporter StSUT4 seems to play an important role in the photoperiod-dependent triggering of both developmental processes, flowering and tuberization, and the phenotype of StSUT4-inhibited potato plants is reminiscent to miR172 overexpressing plants. The first aim of this study was the determination of the level of miR172 in sink and source leaves of StSUT4-silenced as well as StSUT4-overexpressing plants in comparison to Solanum tuberosum ssp. Andigena wild type plants. The second aim was to investigate the effect of sugars on the level of miRNA172 in whole cut leaves, as well as in whole in vitro plantlets that were supplemented with exogenous sugars. Experiments clearly show a sucrose-dependent induction of the level of mature miR172 in short time as well as long time experiments. A sucrose-dependent accumulation of miR172 was also measured in mature leaves of StSUT4-silenced plants where sucrose export is delayed and sucrose accumulates at the end of the light period.

2019 ◽  
Vol 9 (2) ◽  
pp. 91
Author(s):  
Ghea Dotulong ◽  
Stella Umboh ◽  
Johanis Pelealu

Uji Toksisitas Beberapa Fungisida Nabati terhadap Penyakit Layu Fusarium (Fusarium oxysporum) pada Tanaman Kentang (Solanum tuberosum L.) secara In Vitro (Toxicity Test of several Biofungicides in controlling Fusarium wilt (Fusarium oxysporum) in Potato Plants (Solanum tuberosum L.) by In Vitro) Ghea Dotulong1*), Stella Umboh1), Johanis Pelealu1), 1) Program Studi Biologi, FMIPA Universitas Sam Ratulangi, Manado 95115*Email korespondensi: [email protected] Diterima 9 Juli 2019, diterima untuk dipublikasi 10 Agustus 2019 Abstrak Tanaman kentang (Solanum tuberosum L.) adalah salah satu tanaman hortikultura yang sering mengalami penurunan dari segi produksi dan produktivitasnya, akibat adanya serangan penyakit layu yang salah satunya disebabkan oleh Fusarium oxysporum. Tujuan penelitian ini adalah mengidentifikasi toksisitas beberapa fungisida nabati dalam mengendalikan penyakit Layu Fusarium (F. oxysporum) pada tanaman kentang (Solanum tuberosum L.) secara In Vitro. Metode Penelitian yang digunakan yaitu metode umpan beracun. Data dianalisis dengan Rancangan Acak Lengkap (RAL) dengan Analisis Varian (ANAVA) yang dilanjutkan dengan menggunakan metode BNT (Beda Nyata Terkecil). Hasil Penelitian, diperoleh nilai toksisitas fungisida nabati tertinggi yaitu pada ekstrak daun sirsak dengan nilai HR (69,44%), kategori berpengaruh, ditandai dengan diameter koloni 2,75 cm (100ppm) dan yang terendah toksisitasnya yaitu pada ekstrak daun jeruk purut dengan nilai HR (49,81%), kategori cukup berpengaruh ditandai dengan diameter koloni 3,75 cm (25ppm). Semakin tinggi konsentrasi yang diujikan maka semakin tinggi toksisitas dari fungisida nabati yang diberikan.Kata Kunci: fungisida nabati, Fusarium oxysporum, tanaman kentang, In Vitro Abstract Potato plants (Solanum tuberosum L.) is one of the horticulture plants which often decreases in terms of production and productivity, due to the attack of wilt, one of which is caused by Fusarium oxysporum. The purpose of this study was to determine the toxicity of several biofungicides in controlling Fusarium wilt (F. oxysporum) in potato plants (Solanum tuberosum L.) in Vitro. The research method used was the In Vitro method with the poison bait method. Data were analyzed by Completely Randomized Design with Variant Analysis (ANAVA), followed by the BNT method. The results showed that the highest biofungicide toxicity value was soursop leaf extract with HR values (69.44%), influential categories, characterized by colony diameter 2.75 cm (100ppm) and the lowest toxicity, namely in kaffir lime leaf extract with a value of HR (49.81%), quite influential category was characterized by colony diameter of 3.75 cm (25ppm). The higher the concentration tested, the higher the toxicity of the biofungicide given.Keywords: biofungicides, Fusarium oxysporum, Potato Plants, In Vitro.


2002 ◽  
Vol 15 (10) ◽  
pp. 1086-1094 ◽  
Author(s):  
Lawrence Lee ◽  
Peter Palukaitis ◽  
Stewart M. Gray

The requirement for the 17-kDa protein (P17) of Potato leafroll virus (PLRV) in virus movement was investigated in four plant species: potato (Solanum tuberosum), Physalis floridana, Nicotiana benthamiana, and N. clevelandii. Two PLRV P17 mutants were characterized, one that does not translate the P17 and another that expresses a P17 missing the first four amino acids. The P17 mutants were able to replicate and accumulate in agroinoculated leaves of potato and P. floridana, but they were unable to move into vascular tissues and initiate a systemic infection in these plants. In contrast, the P17 mutants were able to spread systemically from inoculated leaves in both Nicotiana spp., although the efficiency of infection was reduced relative to wild-type PLRV. Examination of virus distribution in N. benthamiana plants using tissue immunoblotting techniques revealed that the wild-type PLRV and P17 mutants followed a similar movement pathway out of the inoculated leaves. Virus first moved upward to the apical tissues and then downward. The P17 mutants, however, infected fewer phloem-associated cells, were slower than wild-type PLRV in moving out of the inoculated tissue and into apical tissues, and were unable to infect any mature leaves present on the plant at the time of inoculation.


2017 ◽  
Vol 13 (24) ◽  
pp. 145
Author(s):  
Sadek Chahredine ◽  
Nadia Ykhlef

The aim of this study is to determine the effects of different concentrations and combinations of the phytohormones, 1-naphthaleneacetic acid (NAA), and 6-benzylaminopurine (BAP): M1 (0.5 mg / l +1 mg / l), M2 (1 mg / l + 0.5 mg / l) , M3 (2 mg / l +2 mg / l), M4 (0.5 mg / l + l mg / l, NAA), M5 (1.0 mg / l + l mg / l , NAA), and M6 (2.0 mg / l + l mg / l, NAA). This study was carried out in dark condition on callus induction of potato plants (Solanum tuberosum L.) cultivars from potato tuber bud so as to demonstrate the role of light. The callus initiation begins after 7 days of incubation for all studied media. After two months of incubation, the better development of callus was noted in Spunta variety by using medium M1, M2, M3, and M6. The calluses took a compact structure of brown-white color for both varieties with a callus induction rate of 20- 40%. This was collected with kondor variety for M2 and (M3, M4, M5) media respectively and 10-30% for M4 (M1, M2, M3) for Spunta variety also. The highest fresh weight was recorded on M2 medium with 0.26g for Kondor variety and 0.93g for Spunta variety.


2018 ◽  
Vol 62 (8) ◽  
Author(s):  
Karin Meinike Jørgensen ◽  
Karen M. T. Astvad ◽  
Rasmus Krøger Hare ◽  
Maiken Cavling Arendrup

ABSTRACT Olorofim is a novel antifungal agent with in vitro activity against Aspergillus and some other molds. Here, we addressed technical aspects for EUCAST olorofim testing and generated contemporary MIC data. EUCAST E.Def 9.3.1 testing was performed comparing two plate preparation methods (serial dilution in medium [serial plates] versus predilution in DMSO [ISO plates]), two lots of olorofim, visual (visual-MIC) versus spectrophotometer (spec-MIC) reading, and four polystyrene plates using 34 to 53 Aspergillus isolates from five genera. Subsequently, olorofim MICs were compared to itraconazole, voriconazole, posaconazole, and amphotericin B MICs for 298 clinical mold isolates (2016 to 2017). Wild-type upper limits (WT-UL) were determined following EUCAST principles for epidemiologic cutoff value (ECOFF) setting. Olorofim median MICs comparing serial plates and ISO plates were identical (25/36 [69%]) or one dilution apart (11/36 [31%]). Interperson agreement for visual-MICs was 92% to 94%/100% for ≤1/≤2 dilutions, respectively. The visual-MIC values across tested microtiter plates and olorofim lots revealed only discrete differences (≤1 dilution lower for treated plates). No single spec-MIC criterion was applicable to all species. Olorofim MICs were low against 275 Aspergillus species isolates (modal MIC, 0.06 mg/liter; MIC range, < 0.004 to 0.25 mg/liter) and three dermatophytes (MICs 0.03 to 0.06 mg/liter). MICs against Fusarium were diverse, with full inhibition of F. proliferatum (MIC, 0.016), 50% growth inhibition of Fusarium solani at 1 to 2 mg/liter, and no inhibition of F. dimerum. Olorofim displayed potent in vitro activity against most mold isolates and was associated with limited variation in EUCAST susceptibility testing.


Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1331
Author(s):  
Ji-yeon Ryu ◽  
Yoonseong Choi ◽  
Kun-Hwa Hong ◽  
Yong Suk Chung ◽  
Somi Kim Cho

We evaluated the effect of the roasting and brewing conditions of Tartary buckwheat (TB), which is widely used in infusion teas, on its antioxidant and antiproliferative activities in vitro. TB was roasted at 210 °C for 10 min and brewed at a high temperature for a short time (HTST; 85–90 °C, 3 min) or at room temperature for a long time (RTLT; 25–30 °C, 24 h). Roasted TB (RTB) tea brewed at RTLT had the highest total polyphenol content (TPC) and total flavonoid content (TFC) among the four TB teas for different roasting and brewing conditions. Moreover, RTB brewed at RTLT showed the greatest 2,2-diphenyl-1-picrylhydrazyl-, 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)-, and alkyl-scavenging activities. The TB tea brewed at RTLT had higher Fe2+-chelating activity than that brewed at HTST, irrespective of roasting. Moreover, RTB tea brewed at RTLT inhibited the proliferation of human pancreatic and breast cancer cells. Overall, RTB-RTLT displayed the largest effect on antioxidant and antiproliferative effects. Finally, rutin was found to possess the most pronounced effect on the antioxidant and antiproliferative activities of the TB teas. These results indicate that the antioxidant and antiproliferative activities of RTB are enhanced by RTLT brewing.


2002 ◽  
Vol 38 (SI 1 - 6th Conf EFPP 2002) ◽  
pp. S95-S98
Author(s):  
M. Pompe-Novak ◽  
M. Tušek-Žnidarič ◽  
B. Štrukelj ◽  
M. Ravnikar

The localization of cysteine proteinase PLCP-2 was investigated in potato plants (Solanum tuberosum L.) cultivar Désirée by electron microscopy. Healthy and PVY<sup>NTN</sup> infected potato plants were grown in vitro on media with or without a supplement of jasmonic acid. We had already shown that PLCP-2 is present in leaves, stems, tips of shoots and tips of roots of healthy and PVY<sup>NTN</sup> infected plants. It was detected in various cell types in protein bodies in vacuoles, in cytoplasm and in cell walls. There were significantly larger amounts of PLCP-2 in plants grown on medium with a supplement of jasmonic acid in both healthy and virus infected plants. More protein bodies in vacuoles were found in plants grown on medium with addition of jasmonic acid.


2018 ◽  
Author(s):  
Shu-Qi Zhang ◽  
Ke-Yue Ma ◽  
Alexandra A. Schonnesen ◽  
Mingliang Zhang ◽  
Chenfeng He ◽  
...  

We present tetramer-associated T-cell receptor sequencing (TetTCR-Seq), a method to link T cell receptor (TCR) sequences to their cognate antigens in single cells at high throughput. Binding is determined using a library of DNA-barcoded antigen tetramers that is rapidly generated by in vitro transcription and translation. We applied TetTCR-Seq to identify patterns in TCR cross-reactivity with cancer neo-antigens and to rapidly isolate neo-antigen-specific TCRs with no cross-reactivity to the wild-type antigen.


2021 ◽  
Vol 181 (4) ◽  
pp. 164-172
Author(s):  
E. S. Bespalova ◽  
M. M. Agakhanov ◽  
S. B. Arkhimandritova ◽  
M. V. Erastenkova ◽  
Yu. V. Uhatova

Background. VIR’s potato collection is one of the oldest and richest; however, it is constantly exposed to viruses that negatively affect useful agronomic properties of tubers. Close monitoring of the phytosanitary state of potato accessions helps to select the most effective method of therapy for subsequent healing of infected plants and obtaining high-quality planting material.Materials and methods. The research was aimed at improving the health of 18 varieties of Solanum tuberosum L. from the VIR collection. Testing for the presence of viruses was based on the ICA and RTPCR techniques, and the consequent healing was performed using the methods of meristem culture and cryotherapy.Results and conclusions. During the field test of potato plants, PVX, PVS and PVA were found to be the most common viruses. PSTVd was completely absent in all tested accessions. The effectiveness of in vitro healing of potato plants from viruses was assesses using meristem culture. The percentage of healed plants was 0% for PVS, 0% for PVX, 33.4% for PVA, 50% for PLRV, 72.3% for PVY, and 83.4% for PVM. Healing with meristem culture was shown to be the most effective against PVY and PVM. While assessing the effectiveness of post-cryogenic restoration of potato microplants, the level of post-cryogenic regeneration of the shoot tips in potato microplants was determined at 22.3% on average for a sample. The minimum was observed in k-16762 ‘Sagita N’ (5%), and the maximum in k-1378 ‘Marta’ (41.7%). Analysis of the effectiveness of potato recovery from viruses by in vitro cryotherapy showed that the percentage of recovered plants was 100% for PVY, 100% for PVA, 88.9% for PVM, 77.8% for PVS, 44.4% for PVX. Thus, the techniques of apical meristem culture and cryotherapy proved to be effective against PVY, PVA and PVM viruses. However, in the case of multiple infections, it is necessary to combine elements of different healing protocols to increase the effectiveness of the healing procedure. 


2012 ◽  
Vol 14 ◽  
pp. 147-155
Author(s):  
I.V. Demchuk ◽  
I.V Volkova ◽  
A.M. Pustovoyt

The possibility of improving the adaptive capacity of in vitro potato plants to soil conditions under the use of biological preparations like Phytodoctor, Mikosan, Optim-humus, Chaetomic and Kladostim was investigated. After determination of auxin, cytokinin, gibberellic activity of their solutions, the effect of biological preparations on the growth and productivity of potato microplants upon their transfer to the in vivo conditions was studied. Among the investigated solutions the most bioassay activity was observed for biological preparation Optimhumus, while Phytodoctor, Kladostim, Chaetomic, Mikosan had higher effect on plant productivity.


Sign in / Sign up

Export Citation Format

Share Document