scholarly journals In vitro morphogenetic responses from obligatory apomictic Taraxacum belorussicum Val. N. Tikhom seedlings explants

2019 ◽  
Vol 139 (3) ◽  
pp. 505-522 ◽  
Author(s):  
Adrianna Gałuszka ◽  
Maciej Gustab ◽  
Monika Tuleja

Abstract Taraxacum belorussicum Val. N. Tikhom, a poorly known and obligatory apomictic species, is an attractive plant material for studying the embryological, genetic and molecular mechanisms of apomixis. This work aims to obtain an efficient protocol for Taraxacum belorussicum regeneration. Four types of explants (cotyledons, hypocotyls, meristems and roots) that were taken from 2-weeks-old seedlings were used for in vitro cultures, and a fast and efficient protocol of T. belorussicum regeneration was obtained. Various ½ MS-based media containing IAA (5.71 µM), TDZ (4.54 µM) and PSK (100 nM) were chosen to assess the morphogenetic abilities of selected T. belorussicum explants. Studies on the role of PSK were done in three independent experiments, where the most significant factors were always light and darkness. All explants produced callus by the third day of culture and adventitious shoots after 7 days, although in an asynchronous indirect manner, and with different intensities for all explant types. The most preferred medium culture for hypocotyl, cotyledon and meristem explants was ½ MS + TDZ, and ½ MS + IAA + TDZ + PSK for roots which were the only explant sensitive to PSK. A short darkness pretreatment (8 days) in PSK medium was found suitable to enhance organogenesis. Secondary organogenesis was observed for regenerated plants on meristem explants from the ½ MS + IAA + TDZ + PSK medium. A weak somatic embryogenesis was observed for hypocotyl and cotyledon explants from ½ MS + IAA + TDZ and ½ MS + IAA + TDZ + PSK media. Histological and scanning electron microscope images (SEM) of T. belorussicum confirmed indirect organogenesis and somatic embryogenesis. Plant material treated with aniline blue solution revealed the presence of callose in the cell walls of cotyledon and hypocotyl explants. The presence of extracellular matrix (ECM) and heterogenic structure of callus was also verified by scanning electron microscopy and light microscopy, confirming the high morphogenetic ability of T. belorussicum.

Author(s):  
Tammy Estabrooks ◽  
Zhongmin Dong

Somatic embryogenesis is the process by which somatic cells are induced into an embryogenic state, followed by differentiation into embryos. Somatic embryogenesis, in addition to being a method of propagation, can serve as an experimental tool for research into plant embryo development. This is a review of the current literature on in vitro plant somatic embryogenesis and the molecular advances made to identify genes expressed during the various stages of this process. Some factors hindering the elucidation of the molecular mechanisms underlying somatic embryogenesis are discussed.L’embryogenèse somatique est le processus par lequel les cellules somatiques passent à l’état embryogène et se différencient en embryons. En plus de constituer une méthode de propagation, elle peut servir d’outil expérimental de recherche pour développer des embryons de plantes. Le présent document est une revue de la documentation sur l’embryogenèse somatique végétale in vitro et sur les progrès réalisés à l’échelle moléculaire pour identifier les gènes exprimés au cours des divers stades du processus. On examine aussi certains facteurs qui rendent difficile l’élucidation des mécanismes moléculaires de l’embryogenèse somatique.


2011 ◽  
Vol 6 (7) ◽  
pp. 1934578X1100600
Author(s):  
Sandra Sharry ◽  
Marina Adema ◽  
María A. Basiglio Cordal ◽  
Blanca Villarreal ◽  
Noelia Nikoloff ◽  
...  

In Argentina, there are numerous native species which are an important source of natural products and which are traditionally used in medicinal applications. Some of these species are going through an intense extraction process in their natural habitat which may affect their genetic diversity. The aim of this study was to establish vegetative propagation systems for three native forestal species of medicinal interest. This will allow the rapid obtainment of plants to preserve the germplasm. This study included the following species which are widely used in folk medicine and its applications: Erythrina crista-galli or “seibo” (astringent, used for its cicatrizant properties and for bronchiolitic problems); Acacia caven or “espinillo” (antirheumatic, digestive, diuretic and with cicatrizant properties) and Salix humboldtiana or “sauce criollo” (antipyretic, sedative, antispasmodic, astringent). The methodology included the micropropagation of seibo, macro and micropropagation of Salix humboldtiana and the somatic embryogenesis of Acacia caven. The protocol for seibo regeneration was adjusted from nodal sections of seedlings which were obtained from seeds germinated in vitro. The macropropagation through rooted cuttings of “sauce criollo” was achieved and complete plants of this same species were obtained through both direct and indirect organogenesis using in vitro cultures. The somatic embryogenesis for Acacia caven was optimized and this led to obtain a high percentage of embryos in different stages of development. We are able to support the conservation of native forest resources of medicinal use by means of vegetative propagation techniques.


HortScience ◽  
1996 ◽  
Vol 31 (1) ◽  
pp. 154-155
Author(s):  
Dennis P. Stimart ◽  
John C. Mather

Cotyledons from developing 6- to 8-week-old embryos of Liatris spicata (L.) Willd. (blazing star) were cultured on Murashige and Skoog medium containing 0, 0.4, 4.4, or 44.4 μm BA or 0, 0.2, 2.2, or 22.2 μm TDZ to induce adventitious shoot formation. The highest percentage of cotyledons forming the most shoots was on medium containing 2.2 μm TDZ. Cotyledon-derived callus cultured on medium containing 4.4 μm BA formed ≈16 times more adventitious shoots than on 2.2 μm TDZ. Adventitious shoots derived from cotyledons or callus produced roots when placed on MS medium containing 5.0 μm IBA. Regenerated plants that flowered in the field appeared homogeneous. Chemical names used: N6-benzyladenine (BA), thidiazuron (TDZ), indole-3-butyric acid (IBA).


2014 ◽  
Vol 117 (3) ◽  
pp. 311-322 ◽  
Author(s):  
Edgardo Carloni ◽  
Andrea Ribotta ◽  
Eliana López Colomba ◽  
Sabrina Griffa ◽  
Mariana Quiroga ◽  
...  

2017 ◽  
Vol 59 (1) ◽  
pp. 93-103 ◽  
Author(s):  
Teresa Hazubska-Przybył ◽  
Monika Dering

AbstractEmbryogenic cultures of plants are exposed to various stress factors bothin vitroand during cryostorage. In order to safely include the plant material obtained by somatic embryogenesis in combination with cryopreservation for breeding programs, it is necessary to monitor its genetic stability. The aim of the present study was the assessment of somaclonal variation in plant material obtained from embryogenic cultures ofPicea abies(L.) Karst. andP. omorika(Pančić) Purk. maintainedin vitroor stored in liquid nitrogen by the pregrowth-dehydration method. The analysis of genetic conformity with using microsatellite markers was performed on cotyledonary somatic embryos (CSE), germinating somatic embryos (GSE) and somatic seedlings (SS), obtained from tissues maintainedin vitroor from recovered embryogenic tissues (ETc) and CSE obtained after cryopreservation. The analysis revealed changes in the DNA of somatic embryogenesis-derived plant material of bothPiceaspp. They were found in plant material from 8 out of 10 tested embryogenic lines ofP. abiesand in 10 out of 19 embryogenic lines ofP. omorikaafterin vitroculture. Changes were also detected in plant material obtained after cryopreservation. Somaclonal variation was observed in ETc and CSE ofP. omorikaand at ETv stage ofP. abies. However, most of the changes were induced at the stage of somatic embryogenesis initiation. These results confirm the need for monitoring the genetic stability of plants obtained by somatic embryogenesis and after cryopreservation for both spruce species.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1155
Author(s):  
Júlia Hunková ◽  
Monika Szabóová ◽  
Alena Gajdošová

The aim of this work was to assess the regeneration capacity of Amelanchier alnifolia var. cusickii and Lonicera kamtschatica cv. ‘Jugana’ from different types of explants under various hormonal treatments. The whole leaves, petioles, and internodal segments of in vitro plants were examined as explants. Several plant growth regulators (cytokinins and auxins) were evaluated for their ability to induce adventitious regeneration. Direct and indirect organogenesis was achieved under certain culture conditions in both species. The frequency of shoot regeneration was strongly dependent on concentrations of plant growth regulators in the induction media (L.kamtschatica ‘Jugana’) or concentrations of plant growth regulators in the induction media and type of explant (A. alnifolia var. cusickii). Results showed that leaves were not suitable explants for A. alnifolia var. cusickii. Both species were able to regenerate shoots from internodal segments and petioles. The highest induction of shoots was obtained on Murashige and Skoog (MS) medium enriched with 2 mg/L thidiazuron (TDZ) and 0.5 mg/L indole-3-butyric acid (IBA) for Amelanchier alnifolia and with 1 mg/L TDZ and 0.2 mg/L indole-3-acetic acid (IAA) for L. kamtschatica ‘Jugana’. Obtained adventitious shoots were further proliferated in order to investigate their multiplication capacity. The multiplication of shoots was successful in all cultivars, with the best results reported in A. alnifolia var. cusickii (7.07 shoots/explant on average).


Author(s):  
Justyna Żabicka ◽  
Piotr Żabicki ◽  
Aneta Słomka ◽  
Monika Jędrzejczyk-Korycińska ◽  
Teresa Nowak ◽  
...  

Abstract The paper presents a technique for micropropagation of endangered in Europe and extinct in Poland Pulsatilla vulgaris for ex situ conservation of the genetic resources. Genotype-dependent induction of somatic embryogenesis and rooting was revealed in series of two experiments (I and II) performed under the same experimental conditions. Shoot tips of seedlings were the best explants in both experiments and Murashige and Skoog (MS) medium supplemented with 0.25 or 0.5 mg L−1 BAP was suitable for induction of somatic embryos (SE) and adventitious shoots. Mass SE was obtained in experiment I after explants transfer on ½ MS (2% sucrose) + 0.45 mg L−1 B1 and extending culture to 2–3 months without passages. Rooting of adventitious shoots was a critical point. Out of seven rooting media used in experiment I, only two, ½ MS hormone free (2% sucrose) + 0.45 mg L−1 B1 or MS + 5 mg L−1 NAA + 3.76 mg L−1 B2 resulted in altogether 36.4% rooted shoots. In experiment II, somatic embryogenesis, rooting and acclimatization of adventitious shoots failed. Regenerated plantlets and seedlings converted from SE from experiment I were acclimatized to ex vitro conditions. Both genome size, determined by flow cytometry, and genetic diversity analyzed by ISSR markers, confirmed the compatibility of regenerants from experiment I with P. vulgaris initial seedlings and commercial cultivar. Regenerants obtained in experiment II differed genetically from the regenerants of experiment I and cultivar. Propagated in vitro tissues/organs (SE, adventitious shoots) of P. vulgaris could be a source of material for cryopreservation, artificial seed production and/or for acclimatization of regenerated plantlets and could be used for restoration of the extinct populations. Key Message The micropropagation technique via organogenesis and somatic embryogenesis of endangered in Europe pasqueflower was developed as a tool for species recovery. The critical point is that somatic embryogenesis is genotype-dependent, which affects the repeatability of the experiments and also imposes applying molecular techniques to confirm the genetic fidelity of the regenerants with the initial material and other genotypes.


Author(s):  
Břetislav Křižan ◽  
Eva Ondrušiková ◽  
Jana Moudrá

The current demand for in vitro cultures of grape rootstocks, not only for mass production of plants, but also for genetic engineering is evident. The study on micropropagation of grape rootstock genotypes namely Kober 5BB, Kober 125AA and Teleki 5C was performed. The aim of the study was to develop an optimized protocol to obtain large quantity of plant material. Protocol is based on regeneration via organogenesis, considering that grape embryogenic calluses are laborious to establish and the genotype of the regenerated plants can be altered. Using of Driver and Kuniyuki Walnut media for the establishing of proliferating cultures gave better results than Murashige Skoog media in case of all used rootstocks. Subsequent cultivation on modified Murashige Skoog media with 1-naphtalene acetic acid and increased concentration of cytokynin was characterized by multiplication of cultures and formation of clusters with high multiplication capability. The clusters obtained from rootstock genotypes were suitable for mass propagation as well as for genetic transformation due to their high ability of regeneration.


Author(s):  
Silvio de J. Martínez Medina ◽  
Raúl Barbón Rodríguez, Rafael Gómez-Kosky, Novisel Veitía Rodríguez ◽  
María Esther González Vega ◽  
Orlando Saucedo Castillo ◽  
Eduardo Fidel Héctor Ardisana ◽  
...  

Sorghum [Sorghum bicolor (L.) Moench] is an important crop after wheat, corn, rice and barley. The aim of this research was to study morphological characterization of the plant population of grain sorghum cultivar CIAP 132R-05 regenerated via somatic embryogenesis under semi controlled conditions in green house.  Plants regenerated from somatic embryos were compared to plants grown from botanical seeds. Both populations of plants were characterized morphologically, taking in account quantitative traits (plant height (cm), stem diameter, number of active leaves per plant, limb length and width, number of active roots per plant, length of the roots (cm), fresh weight (gMF), foliar area (dm2), number of shoots per plant) and qualitative traits (albino or variegated plants, color of the leaves). Quantitative characteristics of both populations corresponded with those listed in the National Register of Commercial Varieties of Cuba. However; the population of plants derived from somatic embryos showed significantly higher values ​​for plant height, stem diameter, limb length and width, which may be associated with the physiological rejuvenation produced by the effect of in vitro culture. This allowed to determine the phenotypic stability of the regenerated plants via somatic embryogenesis, by assessing morphological characters in field conditions. The results can be applied to the in vitro propagation of elite plants selected as a product of conventional breeding programs and obtained through the use of different biotechnological methods.


HortScience ◽  
2000 ◽  
Vol 35 (5) ◽  
pp. 940-944 ◽  
Author(s):  
Takuya Tetsumura ◽  
Hisajiro Yukinaga

When cultured in vitro, roots of four Japanese persimmon (Diospyros kaki L.) cultivars formed adventitious shoots on MS medium with 10 μm zeatin and 0.01 μm indole-3-acetic acid, although their organogenetic capacities varied. Histological study revealed that the origin of the adventitious shoots was the pericycle. The regenerated shoots grew well on the shoot proliferation medium (MS with 5 μm zeatin). Final rooting percentages of shoots regenerated from roots of three of the four cultivars were greater than those of shoots that originated from shoot tips and that had been subcultured >50 times. Shoots regenerated from `Jiro' roots rooted 10 days earlier, had more roots than those from shoot tips, and maintained higher rooting ability over ten subcultures. Rooted `Hiratanenashi' shoots regenerated from roots survived better after acclimatization than those from shoot tips. No obvious variants were observed either in vitro or in the field. The trees regenerated from roots flowered within 4 years. These findings suggest that partial rather than true rejuvenation was responsible for both the early flowering and the juvenile characteristics, i.e., the enhanced rooting ability, observed in the regenerated plants. Chemical name used: 6-(4-hydroxy-3-methylbut-2-enylamino) purine (zeatin).


Sign in / Sign up

Export Citation Format

Share Document