scholarly journals Micropropagation and experimental field cultivation of Pulsatilla turczaninovii Kryl. et Serg. (Ranunculaceae)

Author(s):  
Ewa Hanus-Fajerska ◽  
Dawid Kocot ◽  
Alina Wiszniewska ◽  
Aleksandra Koźmińska ◽  
Ewa Muszyńska

AbstractPulsatilla turczaninovii is an important medicinal plant, valued for high ornamental value of melliferous flowers. We assessed the efficiency of reproduction under in vitro conditions and the ex situ growth capacity of this important representative of the world flora. The seed germination percentage was assessed, followed by determination of micropropagation rate and rooting efficiency. Then, the possibility of plant development in three consecutive growing seasons was assessed. The in vitro germination percentage was approximately 55%. The highest multiplication coefficient, amounting to 5.17, was obtained on modified MS medium supplemented with 2.5 mg L−1 2iP and 1.0 mg L−1 IAA. Our study provided unique insight on biochemical background of root regeneration in P. turczaninovii. In comparison with standard auxin-supplemented rooting medium, the treatment with 1.0 mg L−1 level of ethylene precursor ACC elevated rooting by about 20%. The total content of soluble sugars was proved to be biomarker of rhizogenesis in the studied species. Their concentration was positively correlated with rooting efficiency, while a level of phenolic was positively correlated with the length of regenerated roots, and their number per rosette. The cultivation of the acclimatized material was successfully carried out and was evaluated over three subsequent years. In the third year of cultivation, the plants entered the stage of generative development and most of them bloomed profusely.

2021 ◽  
Author(s):  
Ewa Joanna Hanus-Fajerska ◽  
Dawid Kocot ◽  
Aleksandra Koźmińska ◽  
Alina Wiszniewska ◽  
Ewa Muszyńska

Abstract Pulsatilla turczaninovii is an important medicinal plant and a material also appreciated by gardeners for its high ornamental value. In this study we assessed the efficiency of reproduction under in vitro conditions of this important representative of the world flora. First, the germination percentage and the following plant development during three growing seasons were assessed, then we tested the possibilities of multiplication by in vitro culture methods. Our study provided new insight on biochemical background of generating adventitious roots in Pulsatilla considered difficult-to-rooting. The germination percentage of studied population reached about 55%. The highest multiplication coefficient of micro-rosettes in tissue culture, amounting to 5.17, was achieved using modified MS medium supplemented with 2.5 mg L-1 2iP and 1 mg L-1 IAA. We proved that in comparison with standard auxin-supplemented rooting medium, the treatment with addition of 1.0 mg L-1 ethylene precursor ACC elevated adventitious rooting by about 20%. The biochemical analyses revealed that total content of soluble sugars was the most impactful biomarker of adventitious rhizogenesis in studied species. Concentration of sugars was positively correlated with rooting efficiency, while the level of phenolic compounds was positively correlated with the root length and their number regenerated per single rosette.


2011 ◽  
Vol 39 (1) ◽  
pp. 288 ◽  
Author(s):  
Adrian Ioan TIMOFTE ◽  
Doru PAMFIL ◽  
Magdalena PALADA-NICOLAU ◽  
Claudia Simona TIMOFTE

The somatic embryogenesis is an advanced method for clonal propagation and a useful tool for ex situ conservation of genetic resources. In this paper, the results of an experiment to investigate the influence of development stage of explants and culture medium on the germination percentage in two oak species (three provenances of Quercus robur and two provenances of Q. frainetto), are presented. A high significant influence of the development stage of explants and a significant influence of the interaction provenance x stage on the germination percentage were recorded for Q. robur explants, whilst no significant differences between the germination percentages against the nutritive media used were fould for both oak species.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1020C-1020
Author(s):  
Ann M. Chanon ◽  
Pablo S. Jourdan ◽  
Joseph C. Scheerens

The genus Aesculus (buckeyes and/or horsechestnuts) is composed of 13 species and a number of interspecific hybrids. Pollen from 11 genotypes from five Aesculus species and the hybrid Aesculus ×carnea were used to develop an in-vitro germination test to evaluate pollen viability under various storage treatments. This test was optimized using samples of both fresh pollen and pollen that had been stored up to 1 year. The most effective medium contained 20% sucrose, 100 mg·L-1 H2BO3, 150 mg·L-1 Ca(NO3)2, and 1% agar. The highest germination percentage was observed at 15 °C across all storage treatments. Fresh pollen germinated in excess of 80% over a wide range of germination temperatures. Based on this, all specimens studied would be good pollen parents. The differences in pollen germination between storage at -20 and -80 °C were nonsignificant, but the duration of the storage period was highly significant. At 3 months, viability remained above 60% for four of the six species/hybrid tested. However, at 12 months, all pollen tested dropped below the threshold for good fruit set based on in-vitro pollen germination. Based on these observations, short-term pollen storage may permit crosses between parents with temporally separate flowering phenologies. However, conventional storage procedures are inadequate to maintain pollen collected from a male parent for crosses in subsequent growing seasons.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1462
Author(s):  
Michelle Issac ◽  
Princy Kuriakose ◽  
Stacie Leung ◽  
Alex B. Costa ◽  
Shannon Johnson ◽  
...  

Xerophyllum asphodeloides (Xerophyllaceae), known as eastern turkeybeard, is an herbaceous perennial found in eastern North America. Due to decline and destruction of its habitat, several states rank X. asphodeloides as “Imperiled” to “Critically Imperiled”. Protocols for seed cryopreservation, in vitro germination, sustainable shoot micropropagation, shoot establishment in soil, and seed germination are presented. Seeds from two tested sources were viable after 20 months of cryopreservation. Germination of isolated embryos in vitro was necessary to overcome strong seed dormancy. Shoot multiplication and elongation occurred on ½ MS medium without PGRs. Shoots rooted in vitro without PGRs or with 0.5 mg/L NAA or after NAA rooting powder treatment and placement in potting mix. When planted in wet, peaty soil mixes, shoots grew for two months and then declined. When planted in a drier planting mix containing aged bark, most plants continued growth. In the field, plant survival was 73% after three growing seasons. Safeguarding this species both ex situ and in situ is possible and offers a successful approach to conservation. Whole seeds germinated after double dormancy was overcome by incubation under warm moist conditions for 12 weeks followed by 12 weeks cold at 4 °C and then warm.


Zygote ◽  
2021 ◽  
pp. 1-7
Author(s):  
Luciana Diniz Rola ◽  
Eveline dos Santos Zanetti ◽  
Maite del Collado ◽  
Ellen de Fátima Carvalho Peroni ◽  
José Maurício Barbanti Duarte

Summary In vitro production of embryos has gained prominence as a tool for use in wildlife conservation programmes in situ and ex situ. However, the development of this technique depends on steps that include ovarian stimulation, collection and oocyte maturation. The purpose of this study was to assess the feasibility of an ovarian stimulation protocol for follicular aspiration, the efficiency of videolaparoscopy for follicular aspiration and test a medium for in vitro oocyte maturation for the species Mazama gouazoubira. Five females were submitted to repeated ovarian stimulation (hormone protocol using controlled internal drug release), and estradiol benzoate on D0 and eight injections of follicle-stimulating hormone, once every 12 h, from D4 onwards at 30-day intervals. Fourteen surgical procedures were performed in superstimulated females, resulting in the collection of 94 oocytes and an average of 17.1 ± 9.1 follicles observed, 13.5 ± 6.6 follicles aspirated and 7.2 ± 3.7 oocytes collected per surgery. After collection, the oocytes were submitted to in vitro maturation for 24 h and stained with Hoechst 33342 dye to evaluate their nuclear status; 64.5% of the oocytes reached MII and 16.1% were spontaneously activated by parthenogenesis. The nuclear status of oocytes that did not undergo in vitro maturation was evaluated; 80.9% were found to be immature.


Horticulturae ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 195
Author(s):  
Alla A. Shulgina ◽  
Elena A. Kalashnikova ◽  
Ivan G. Tarakanov ◽  
Rima N. Kirakosyan ◽  
Mikhail Yu. Cherednichenko ◽  
...  

We investigated the influence of different conditions (light composition and plant growth regulators (PGRs) in culture media) on the morphophysiological parameters of Stevia rebaudiana Bertoni in vitro and in vivo. Both PGRs and the light spectra applied were found to significantly affect plant morphogenesis. During the micropropagation stage of S. rebaudiana, optimal growth, with a multiplication coefficient of 15, was obtained in an MS culture medium containing 2,4-epibrassinolide (Epin) and indole-3-acetic acid (IAA) at concentrations of 0.1 and 0.5 mg L−1, respectively. During the rooting stage, we found that the addition of 0.5 mg L−1 hydroxycinnamic acid (Zircon) to the MS medium led to an optimal root formation frequency of 85% and resulted in the formation of strong plants with well-developed leaf blades. Cultivation on media containing 0.1 mg L−1 Epin and 0.5 mg L−1 IAA and receiving coherent light irradiation on a weekly basis resulted in a 100% increase in the multiplication coefficient, better adventitious shoot growth, and a 33% increase in the number of leaves. S. rebaudiana microshoots, cultured on MS media containing 1.0 mg L−1 6-benzylaminopurine (BAP) and 0.5 mg L−1 IAA with red monochrome light treatments, increased the multiplication coefficient by 30% compared with controls (white light, media without PGRs).


Author(s):  
Aakriti Bhandari ◽  
Harminder Singh ◽  
Amber Srivastava ◽  
Puneet Kumar ◽  
G. S. Panwar ◽  
...  

Abstract Background Sophora mollis Royle (family Fabaceae, subfamily-Papilionaceae) is a multipurpose legume distributed in plains and foothills of the North-West Himalaya to Nepal and is facing high risk of extinction due to habitat loss and exploitation by the local people for its fuel and fodder values. Therefore, the present study was conducted to standardize a micropropagation protocol for Sophora mollis by using shoot tip explants and to study the meiotic chromosome count in the species. Results Multiple shoots were induced in shoot tip explants of Sophora mollis in Murashige and Skoog medium supplemented with different concentrations of cytokinins alone (BAP, TDZ, and Kinetin) and in combination with varying concentrations of NAA. MS medium supplemented with BAP (8.9 μM) was observed to be the optimal medium for multiple shoot induction and maximum 25.32 shoots per explant was obtained with average length of 4.5 ± 0.8 cm. In vitro developed shoots were transferred onto rooting media supplemented with different concentrations of auxin (IAA, IBA, and NAA). Maximum 86% rooting was observed in half-strength MS medium supplemented with 21.20 μM NAA with an average of 21.26 roots per culture. In vitro raised plantlets were adapted to greenhouse for better acclimatization and 60% plants were successfully transferred to the open environment. Based on the chromosome counts available from the literature and the current study, the species tend to show a basic chromosome number of x = 9. Conclusion The micropropagation protocol standardized can be helpful for the ex situ mass multiplication and germplasm conservation of the endangered species. Moreover, the ex situ conservation approach will be helpful in actively bridging the gap between ex situ and in situ approaches through the reintroduction of species in the wild. The cytological studies revealed the basic chromosome number x = 9 of the species.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 934
Author(s):  
Chris O’Brien ◽  
Jayeni Hiti-Bandaralage ◽  
Raquel Folgado ◽  
Alice Hayward ◽  
Sean Lahmeyer ◽  
...  

Recent development and implementation of crop cryopreservation protocols has increased the capacity to maintain recalcitrant seeded germplasm collections via cryopreserved in vitro material. To preserve the greatest possible plant genetic resources globally for future food security and breeding programs, it is essential to integrate in situ and ex situ conservation methods into a cohesive conservation plan. In vitro storage using tissue culture and cryopreservation techniques offers promising complementary tools that can be used to promote this approach. These techniques can be employed for crops difficult or impossible to maintain in seed banks for long-term conservation. This includes woody perennial plants, recalcitrant seed crops or crops with no seeds at all and vegetatively or clonally propagated crops where seeds are not true-to-type. Many of the world’s most important crops for food, nutrition and livelihoods, are vegetatively propagated or have recalcitrant seeds. This review will look at ex situ conservation, namely field repositories and in vitro storage for some of these economically important crops, focusing on conservation strategies for avocado. To date, cultivar-specific multiplication protocols have been established for maintaining multiple avocado cultivars in tissue culture. Cryopreservation of avocado somatic embryos and somatic embryogenesis have been successful. In addition, a shoot-tip cryopreservation protocol has been developed for cryo-storage and regeneration of true-to-type clonal avocado plants.


Author(s):  
Asmaa Abdelsalam ◽  
Ehab Mahran ◽  
Kamal Chowdhury ◽  
Arezue Boroujerdi

Abstract Background Anarrhinum pubescens Fresen. (Plantaginaceae) is a rare plant, endemic to the Saint Catherine area, of South Sinai, Egypt. Earlier studies have reported the isolation of cytotoxic and anti-cholinesterase iridoid glucosides from the aerial parts of the plant. The present study aimed to investigate the chemical profiling of the wild plant shoots as well as establish efficient protocols for in vitro plant regeneration and proliferation with further assessment of the genetic stability of the in vitro regenerated plants. Results Twenty-seven metabolites have been identified in wild plant shoots using the Nuclear Magnetic Resonance (NMR) spectroscopy. The metabolites include alkaloids, amino acids, carbohydrates, organic acids, vitamins, and a phenol. In vitro propagation of the plant was carried out through nodal cutting-micropropagation and leaf segment-direct organogenesis. The best results were obtained when nodal cutting explants were cultured on Murashige and Skoog medium with Gamborg B5 vitamins supplemented with 6-benzylaminopurine (BAP) (1.0 mg/L) and naphthaleneacetic acid (NAA) (0.05 mg/L), which gave a shoot formation capacity of 100% and a mean number of shoots of 27.67 ± 1.4/explant. These shoots were successfully rooted and transferred to the greenhouse and the survival rate was 75%. Genetic fidelity evaluation of the micropropagated clones was carried out using random amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) molecular markers. Jaccard’s similarity coefficient indicated a similarity as high as 98% and 95% from RAPD and ISSR markers, respectively. Conclusions This study provides the chemical profiling of the aerial part of Anarrhinum pubescens. Moreover, in vitro regeneration through different tissue culture techniques has been established for mass propagation of the plant, and the genetic fidelity of the in vitro regenerated plants was confirmed as well. Our work on the in vitro propagation of A. pubescens will be helpful in ex situ conservation and identification of bioactive metabolites.


Sign in / Sign up

Export Citation Format

Share Document