Wear Behaviour of In Situ Al/TiB2 Composite: Influence of the Microstructural Instability

2018 ◽  
Vol 66 (1) ◽  
Author(s):  
A. S. Vivekananda ◽  
S. Balasivanandha Prabu
Wear ◽  
2008 ◽  
Vol 265 (1-2) ◽  
pp. 134-142 ◽  
Author(s):  
S. Kumar ◽  
M. Chakraborty ◽  
V. Subramanya Sarma ◽  
B.S. Murty

2010 ◽  
Vol 31 (3) ◽  
pp. 1526-1532 ◽  
Author(s):  
G. Naveen Kumar ◽  
R. Narayanasamy ◽  
S. Natarajan ◽  
S.P. Kumaresh Babu ◽  
K. Sivaprasad ◽  
...  

2018 ◽  
Vol 5 (4) ◽  
pp. 171775 ◽  
Author(s):  
Hao Liu ◽  
Jianzhang Wang ◽  
Pengfei Jiang ◽  
Fengyuan Yan

The performance of polymer composites in seawater, under high hydrostatic pressure (typically few tens of MPa), for simulating exposures at great depths in seas and oceans, has been little studied. In this paper, polyetheretherketone (PEEK) and its composites reinforced by carbon fibres and glass fibres were prepared. The seawater environment with different seawater hydrostatic pressure ranging from normal pressure to 40 MPa was simulated with special equipment, in which the seawater absorption and wear behaviour of PEEK and PEEK-based composites were examined in situ . The effects of seawater hydrostatic pressure on the mechanical properties, wear resistance and microstructure of PEEK and its composites were focused on. The results showed that seawater absorption of PEEK and its composites were greatly accelerated by increased hydrostatic pressure in the deep sea. Affected by seawater absorption, both for neat PEEK and composites, the degradation on mechanical properties, wear resistance and crystallinity were induced, the degree of which was increasingly serious with the increase of hydrostatic pressure of seawater environment. There existed a good correlation in an identical form of exponential function between the wear rate and the seawater hydrostatic pressure. Moreover, the corresponding mechanisms of the effects of deep-sea hydrostatic pressure were also discussed.


2011 ◽  
Vol 194-196 ◽  
pp. 1572-1576
Author(s):  
Yong Li ◽  
Dan Qing Yi ◽  
Rui Qing Liu ◽  
Shun Ping Sun

A deformation-processed Cu-10Fe-3Ag in situ composite was made by consumable arc melting and casting followed by extensive deformation. A superior combination of mechanical strength and electrical/thermal conductivity was achieved with the composite since Fe filaments existed in the copper matrix. The effects of sliding speed and electrical current on sliding wear behavior and microstructure of the composite were investigated on wear tester. Worn surfaces of the Cu-10Fe-3Ag in situ composite were analyzed by scanning electron microscopy (SEM). Within the studied range of electrical current and sliding speed, the wear rate increased with the increasing electrical current and the sliding speed. Compared with Cu-10Fe in situ composite under the same conditions, the Cu-10Fe-3Ag in situ composite had much better wear resistance. Adhesive wear, abrasive wear and arc erosion were the dominant mechanisms during the electrical sliding processes.


Wear ◽  
2009 ◽  
Vol 266 (7-8) ◽  
pp. 865-872 ◽  
Author(s):  
A. Mandal ◽  
B.S. Murty ◽  
M. Chakraborty

2014 ◽  
Vol 541-542 ◽  
pp. 263-267
Author(s):  
S. Baskaran ◽  
B.M. Muthamizh Selvan ◽  
V. Anandakrishnan ◽  
R. Venkatraman ◽  
Muthukannan Durai Selvam

The AA7075-4%TiC metal matrix composite produced through in-situ casting technique was hot extruded and subjected to annealing at 415°C for 150 minutes. Another set of hot extruded AA7075-4%TiC metal matrix composite was heat treated to T6 condition. Dry sliding wear test was conducted with different sliding speeds and loads for both annealed and T6 conditioned composites to compare their wear behaviour. It was observed that irrespective of the heat treatment conditions, the depth of wear, decreases with increasing sliding velocity for all the loads tested and increases with increasing load for all the sliding velocities.


2008 ◽  
Vol 498 (1-2) ◽  
pp. 495-500 ◽  
Author(s):  
K. Sivaprasad ◽  
S. P. Kumaresh Babu ◽  
S. Natarajan ◽  
R. Narayanasamy ◽  
B. Anil Kumar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document