scholarly journals Structurally Driven Environmental Degradation of Friction in MoS2 Films

2021 ◽  
Vol 69 (3) ◽  
Author(s):  
John F. Curry ◽  
Taisuke Ohta ◽  
Frank W. DelRio ◽  
Philip Mantos ◽  
Morgan R. Jones ◽  
...  

AbstractWe report an investigation of the friction mechanisms of MoS2 thin films under changing environments and contact conditions using a variety of computational and experimental techniques. Molecular dynamics simulations were used to study the effects of water and molecular oxygen on friction and bonding of MoS2 lamellae during initial sliding. Characterization via photoelectron emission microscopy (PEEM) and Kelvin probe force microscopy (KPFM) were used to determine work function changes in shear modified material within the top few nanometers of MoS2 wear scars. The work function was shown to change with contact conditions and environment, and shown by density functional theory (DFT) calculations and literature reports to be correlated with lamellae size and thickness of the basally oriented surface layer. Results from nanoscale simulations and macroscale experiments suggest that the evolution of the friction behavior of MoS2 is linked primarily to the formation or inhibition of a basally oriented, molecularly thin surface film with long-range order.

2021 ◽  
Vol 12 ◽  
pp. 432-439
Author(s):  
Zhao Liu ◽  
Antoine Hinaut ◽  
Stefan Peeters ◽  
Sebastian Scherb ◽  
Ernst Meyer ◽  
...  

A novel reconstruction of a two-dimensional layer of KBr on an Ir(111) surface is observed by high-resolution noncontact atomic force microscopy and verified by density functional theory (DFT). The observed KBr structure is oriented along the main directions of the Ir(111) surface, but forms a characteristic double-line pattern. Comprehensive calculations by DFT, taking into account the observed periodicities, resulted in a new low-energy reconstruction. However, it is fully relaxed into a common cubic structure when a monolayer of graphene is located between substrate and KBr. By using Kelvin probe force microscopy, the work functions of the reconstructed and the cubic configuration of KBr were measured and indicate, in accordance with the DFT calculations, a difference of nearly 900 meV. The difference is due to the strong interaction and local charge displacement of the K+/Br− ions and the Ir(111) surface, which are reduced by the decoupling effect of graphene, thus yielding different electrical and mechanical properties of the top KBr layer.


Author(s):  
Lijuan Meng ◽  
Jinlian Lu ◽  
Yujie Bai ◽  
Lili Liu ◽  
Tang Jingyi ◽  
...  

Understanding the fundamentals of chemical vapor deposition bilayer graphene growth is crucial for its synthesis. By employing density functional theory calculations and classical molecular dynamics simulations, we have investigated the...


Catalysts ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1306
Author(s):  
Francesco Ferrante ◽  
Antonio Prestianni ◽  
Marco Bertini ◽  
Dario Duca

Molecular dynamics simulations based on density functional theory were employed to investigate the fate of a hydrogen molecule shot with different kinetic energy toward a hydrogenated palladium cluster anchored on the vacant site of a defective graphene sheet. Hits resulting in H2 adsorption occur until the cluster is fully saturated. The influence of H content over Pd with respect to atomic hydrogen spillover onto graphene was investigated. Calculated energy barriers of ca. 1.6 eV for H-spillover suggest that the investigated Pd/graphene system is a good candidate for hydrogen storage.


2020 ◽  
pp. 106060
Author(s):  
Mads Nibe Larsen ◽  
Mads Svanborg Peters ◽  
Rodrigo Lemos-Silva ◽  
Demetrio A. Da Silva Filho ◽  
Bjarke Jørgensen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document