scholarly journals Variation in floristic and trait composition along environmental gradients in the herb layer of temperate forests in the transition zone between Central and SE Europe

Plant Ecology ◽  
2021 ◽  
Author(s):  
Janez Kermavnar ◽  
Lado Kutnar ◽  
Aleksander Marinšek

AbstractSpecies- and trait-environment linkages in forest plant communities continue to be a frequent topic in ecological research. We studied the dependence of floristic and functional trait composition on environmental factors, namely local soil properties, overstory characteristics, climatic parameters and other abiotic and biotic variables. The study area comprised 50 monitoring plots across Slovenia, belonging to the EU ICP Forests monitoring network. Vegetation was surveyed in accordance with harmonized protocols, and environmental variables were either measured or estimated during vegetation sampling. Significant predictors of species composition were identified by canonical correspondence analysis. Correlations between plant traits, i.e. plant growth habit, life form, flowering features and CSR signature, were examined with fourth-corner analysis and linear regressions. Our results show that variation in floristic composition was mainly explained by climatic parameters (mean annual temperature, mean annual precipitation), soil properties (pH) and tree layer-dependent light conditions. Trait composition was most closely related with tree layer characteristics, such as shade-casting ability (SCA, a proxy for light availability in the understory layer), tree species richness and tree species composition. Amongst soil properties, total nitrogen content and soil texture (proportion of clay) were most frequently correlated with different species traits or trait states. The CSR signature of herb communities was associated with tree layer SCA, soil pH and mean annual temperature. The floristic composition of the studied herb-layer vegetation depended on temperature and precipitation, which are likely to be influenced by ongoing climate change (warming and drying). Trait composition exhibited significant links to tree layer characteristics and soil conditions, which are in turn directly modified by forest management interventions.

2010 ◽  
Vol 56 (No. 11) ◽  
pp. 485-504 ◽  
Author(s):  
K. Matějka ◽  
S. Vacek ◽  
V. Podrázský

This paper documents the development of soil conditions in the set of 32 permanent research plots in the Krkonoše (Giant) Mts. These plots represent an altitudinal gradient covering the ecosystems of beech, mixed beech-spruce and spruce stands. In all plots, representing the site conditions of the highest areas of the mountain range, standard soil pits were prepared and the soil sampling was performed in autumn of years 1980, 1993, 1998, 2003 and 2009. The results reflect extreme site conditions, soil acidification, large scale surface liming and in minor extent also different tree species composition of the stands. The general type of the soil-genesis is represented by the podzolisation, overlapping the other soil-genetic factors, including the tree species composition. Nevertheless, this development is mostly expressed in the spruce stands. The beech dominance and/or co-dominance are reflected especially by more efficient N-cycling, higher pH, S and V values and fluctuation and lower extractable Al3+ content. More efficient cycling in beech ecosystems is insignificantly documented for plant available phosphorus, calcium and magnesium contents; on the contrary higher dynamics for iron ions was registered in the spruce stands. The long-term soil dynamics with a hysteresis (evident on the base of ordination analysis) can be divided into some periods – processes of acidification (typical in the 1980's samples), liming (main effect in 1993 and 1998) and regeneration (2003, 2009). Other features, important for the soil development, are probably related to the vegetation change, but this relation is not statistically significant.


2016 ◽  
Vol 47 (2) ◽  
pp. 115 ◽  
Author(s):  
Christiana Ndidi Egbinola

The study investigated the tree species composition along the forest-savanna boundary in Oyo state of Nigeria with the aim of assessing the impact of human activities on the floristic composition. A transect was placed along the study area and species data was collected from quadrats placed in study plots within different study sites. Detrended Correspondence Analysis (DCA) was used to determine vegetation assemblages, while both correlation and the analysis of variance (ANOVA) were used to show the relationship between species in the different study sites. Results of the DCA revealed three species assemblages, an area with only forest species, another with only savanna species and a third with both forest/savanna species. ANOVA results further revealed that within the forest and savanna assemblages, species in mature and successional sites were alike. The study therefore revealed that human activities’ within the region is leading to the establishment of savanna species and an elimination of forest species.


2018 ◽  
Vol 151 (3) ◽  
pp. 303-313 ◽  
Author(s):  
Eduardo Magalhães Borges Prata ◽  
Aloysio De Pádua Teixeira ◽  
Carlos Alfredo Joly ◽  
Marco Antonio Assis

Background and aims – Latitudinal gradients have an important influence on species distribution reflecting the effects of environmental factors such as temperature, rainfall, soil, and geographical distance. In the southeastern Brazilian Atlantic Forest, the role of climatic variables in the floristic composition is better known for altitudinal gradients of the Serra do Mar Mountains rather than for the latitudinal gradient. Here, we investigated the effects of mean annual temperature and rainfall on tree species distribution and composition in a latitudinal gradient in the Atlantic forest.Methods – We calculated each species frequency of occurrence and the latitudinal range. We used multivariate analyses (direct ordination, Hierarchical Clustering followed by Indicator Species analysis and NMDS) to investigate variation in floristic composition, and regression analyses to evaluate mean annual temperatures and rainfall effects on tree species composition along the latitudinal gradient (21°S to 28°S).Key results – A total of 789 species were registered, of which a majority (646 species) were present in less than 20% of the sampled areas, and only four species (0.5%) were present in more than 80% of the sampled areas. Only ten species (1.3%) reached the maximum latitudinal range (~6°). We found a strong correlation between variation in floristic composition and the spatial position in the latitudinal gradient. The cluster analyses detected two main floristic groups, one composed by the forests from Rio de Janeiro (21°S to 23°S) and the second by the forests from São Paulo, Paraná and Santa Catarina States (23°S to 28°S). The multiple regression analysis revealed a strong effect of the climatic variables on the variation of the floristic composition along the latitudinal gradient (r2 = 0.81, P < 0.001), where 62.82% of the variation were explained by mean annual temperature, 8.27% by annual rainfall and 10.45% by both variables together.Conclusions – The restricted distribution of most species may be explained by variations in mean annual temperature and annual rainfall along the latitudinal gradient. For instance, the decreasing mean annual temperature along the coast and the occurrence of frosts at higher latitudes may limit the southward distribution of some species while the lower annual rainfall (with marked seasonality) in the north of the gradient may limit the northward distribution of other species. Although mean annual temperature explained most of the variation in species composition along the latitudinal gradient, the abrupt variation in annual rainfall may explain the high floristic dissimilarity detected in the north of the gradient.


2020 ◽  
Vol 55 (3) ◽  
pp. 225-240
Author(s):  
Helena Więcław ◽  
Marek Podlasiński

AbstractThe Carex flava aggregate belongs to one of the most taxonomically difficult groups of sedges which colonize diverse habitats, from organic to sandy, from acidic to alkaline, usually humid and moist. The study included 129 vegetation plots and ten soil variables (organic matter, phosphorus, potassium, magnesium, calcium, carbonates, carbon, nitrogen, pH, and the ratio between organic carbon and nitrogen). The main aim was to determine the relationships between the various plant communities C. flava agg. occur in and their soil properties. With the aid of the two-way indicator species analysis and cluster analysis, we delimited nine vegetation types from the Scheuchzerio palustris-Caricetea fuscae, Littorelletea uniflorae, Molinio-Arrhenatheretea and Alnetea glutinosae classes differing in their response to soil properties. The CCA revealed pH, N, K, C, CaCO3, P and Ca to be statistically significant, and to account for 11.55% of the total variance in species composition. The largest differences, both in terms of species composition and in soil conditions, were revealed between communities with C. lepidocarpa and C. demissa. Carex lepidocarpa occurred in calcareous and extremely rich fens (Caricion davallianae) whereas C. demissa was found to occur in poor and moderately rich fens (Sphagno-Caricion canescentis, Caricion canescenti-nigrae). Carex flava grew mostly in calcareous, rich fens and wet grasslands (Caricion davallianae, Calthion palustris). Carex viridula was found in both calcareous, extremely and moderately rich fens and wet grasslands, and in nutrient-poor habitats such as dunes and sandy lake shores. The ecological niche of C. viridula is very wide and this species showed no affinity to any specific syntaxon.


2017 ◽  
Vol 63 (4) ◽  
pp. 213-225 ◽  
Author(s):  
Jiří Slanař ◽  
Zdeněk Vacek ◽  
Stanislav Vacek ◽  
Daniel Bulušek ◽  
Jan Cukor ◽  
...  

AbstractThe paper deals with development of the natural regeneration of even-aged spruce-beech forests during their transformation to uneven-aged stands with diversified structure at the Jedlový důl area in the Protected Landscape Area Jizerské hory Mts., Czech Republic. Shelterwood management system and free felling policy based on selection principles has been applied there since 1979 with the support of admixed tree species of the natural species composition, especially silver fir (Abies alba Mill.). The research was focuses on structure and development of natural regeneration with the emphasis on ungulate damage and interaction with tree layer from 1979 to 2015. In the course of 36 years, the regeneration structure was diversified towards the close-to-nature tree species composition, spatial and age structure. The number of regeneration recruits increased in average from 941 to 41,669 ind ha-1. During this period share of European beech (Fagus sylvatica L.) significantly (p < 0.01) increased (by 53.6%), while the share of Norway spruce (Picea abies [L.] Karst.) decreased (by 51.5%), such as damage caused by ungulate (by 61.4%) with the highest loses on sycamore maple (Acer pseudoplatanus L.), rowan (Sorbus aucuparia L.) and silver fir. Moreover, the parent trees had a significant negative influence on natural regeneration at smaller spacing (within a 1 - 5 m radius from the stem). Both, regeneration potential and effective role of the tree layer during the forest transformation has been confirmed as important prerequisites for ongoing forest transformation.


Sign in / Sign up

Export Citation Format

Share Document