Comparison of equine bone marrow-, umbilical cord matrix and amniotic fluid-derived progenitor cells

2010 ◽  
Vol 35 (2) ◽  
pp. 103-121 ◽  
Author(s):  
Arianna Barbara Lovati ◽  
Bruna Corradetti ◽  
Anna Lange Consiglio ◽  
Camilla Recordati ◽  
Elisa Bonacina ◽  
...  
2017 ◽  
Vol 78 (10) ◽  
pp. 1215-1228
Author(s):  
Ute E. Schwab ◽  
Rebecca L. Tallmadge ◽  
Mary Beth Matychak ◽  
M. Julia B. Felippe

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2322-2322
Author(s):  
Takashi Yoshikubo ◽  
Yoshihiro Matsumoto ◽  
Masahiko Nanami ◽  
Takayuki Sakurai ◽  
Hiroyuki Tsunoda ◽  
...  

Abstract Thrombopoietin (TPO, the ligand for c-mpl) is a key factor for megakaryopoiesis. Several clinical trials of TPO have been conducted for thrombocytopenia without much success due to, in part, the production of neutralized antibodies against endogenous TPO, which causes thrombocytopenia. To overcome this problem, we previously demonstrated that mouse type minibody against c-mpl, with an amino acid sequence totally different from TPO, showed megakaryopoiesis and increased platelet numbers in monkey. This time, using CDR grafting, we generated a humanized sc(Fv)2VB22B minibody (huVB22B) against c-mpl for therapeutic use. The new minibody showed almost the same activity in vitro as TPO and the mouse type minibody, confirmed by both a human megakaryocyte cell (CD41+) differentiation assay and a proliferation assay with TPO-dependent cell line, M-07e. Single sc or iv administration of huVB22B to cynomolgus monkeys showed a dose-dependent increase in platelet numbers. Pharmacokinetic analysis showed that the plasma half-life (T1/2) of huVB22B at iv and sc administration to cynomolgus monkeys was 7–8 h and 11–16 h, respectively. After administration of huVB22B, the platelets of these monkeys increased and showed functional aggregation in response to ADP in vitro. Repeated administration of huVB22B (0.2, 2 and 20mg/kg/week) revealed that the increase in platelet level in cynomolgus monkeys was maintained for a month. Very slight reticular fibers in bone marrow were detected in a high dose group (20mg/ kg). No overt changes were detected by toxicity evaluations including clinical pathology and histopathology in 0.2 and 2mg/kg groups. No neutralized activities in plasma were observed during these experiments. Next, we examined the activities of huVB22B on human bone marrow-derived CD34-positive cells (BM-CD34+) and umbilical cord blood-derived CD34-positive cells (UCB-CD34+) in vitro. BM-CD34+ and UCB-CD34+ cells were cultured with huVB22B in serum free medium. HuVB22B induced differentiation of CD41+ cells from BM-CD34+ or UCB-CD34+ cells in a similar dose-dependent manner. However, UCB-CD34+ cells showed greater proliferation in response to huVB22B compared to BM-CD34+ cells. We then examined the in vivo activities of huVB22B on UCB CD34+ cells by treating NOD/SCID mice transplanted with human UCB-CD34+ cells with huVB22B and examining the bone marrow cells of the mice. The results showed that, compared with the control, administration of huVB22B showed an increase in the number of human hematopoietic progenitor cells (CD34+), lymphoid lineage cells (CD19+), and myeloid lineage cells (CD33+) in addition to human CFU-Meg cells (CD41+). These results suggest that c-mpl stimulation in vivo after transplantation might increase engraftment of progenitor cells in the bone marrow microenvironment and subsequently induce differentiation to multilineage cells. Umbilical cord blood transplantation faces frequent complications including a low-level stem/progenitor cell engraftment and delayed platelet recovery. Our results suggest that c-mpl stimulation might be used to increase the engraftment of UCB stem/progenitor cells and shorten the time of platelet recovery following UCB transplantation.


2009 ◽  
Vol 52 (10) ◽  
pp. 1753-1761 ◽  
Author(s):  
Mahmoud Aghaee-afshar ◽  
Mohammad Rezazadehkermani ◽  
Alireza Asadi ◽  
Reza Malekpour-afshar ◽  
Armita Shahesmaeili ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2569-2569
Author(s):  
Robb Friedman ◽  
Monica Betancur ◽  
Hande Tuncer ◽  
Laurent Boissel ◽  
Curtis Cetrulo ◽  
...  

Abstract Umbilical cord blood (UCB) is a viable source of hematopoietic stem cells for transplantation of children and adults undergoing treatment for hematological malignancies. However only 4% of adults 70kg and over have a UCB unit available which contains the widely accepted minimum cell dose of 1.5x107 mononuclear cells per kilogram. Co-transplantation of hematopoietic stem cells with mesenchymal stem cells may enhance engraftment and therefore decrease transplant-related morbidity and mortality from delayed leukocyte recovery associated with a low pre-transplant cell dose. Umbilical cord matrix (UCM) cells, found in the Wharton’s Jelly, were easily and reliably extracted from minced pieces of cord by culture in RPMI + 20% fetal bovine serum at 37° and 5% humidified CO2. UCM expand best in 20% FBS but can also be expanded in human serum, autologous serum, and X-VIVO10. Small (1–3mm) minced pieces of umbilical cord can be cyropreserved at the time of delivery in 10% DMSO solution. UCM cells exhibit a fibroblast morphology and express markers common to mesenchymal stem cells: CD73 (SH3), CD105 (SH2), CD 29, CD44, CD49b, CD117, CD166, STRO-1 and HLA-DR. UCM are negative for CD14, CD 19, CD34, and CD45. Morphology and cell surface marker expression is stable after greater than fifteen passages. UCM cells grown in culture were shown to produce more GM-CSF and G-CSF than similar numbers of adult bone marrow mesenchymal stem cells, GM-CSF 178 pg/mL versus 77 pg/mL and G-CSF 82.6 pg/mL versus 7.9 pg/mL. NOD/SCID mice treated with anti-NK 1.1 antibodies and irradiated with 350 cGy were injected with suboptimal (1x104) numbers of cord blood CD34+ cells with and without 1x106 autologous UCM cells, extracted from the same umbilical cord as the cord blood CD34+ cells. Bone marrow was harvested at six weeks post transplant from both femurs and tibias and peripheral blood obtained via cardiac puncture. The percentage of human CD45+ cells in the bone marrow and the peripheral blood was assessed by flow cytometry. NOD/SCID mice transplanted with 1x104 cord blood CD34+ cells alone had 3.0% human CD45+ cell engraftment in the bone marrow and 3.6% human CD45+ cells in the peripheral blood, while NOD/SCID mice transplanted with 1x104 CD34+ cells and 1x106 UCM cells had an average of 27.3% human CD45+ cell engraftment in the bone marrow and 3.9% human CD45+ cells in the peripheral blood. These results indicate a trend towards improved engraftment in vivo with co-transplantation of suboptimal numbers of umbilical cord blood CD34+ cells and autologous umbilical cord matrix cells versus transplantation of suboptimal numbers of umbilical cord CD34+ cells alone.


Sign in / Sign up

Export Citation Format

Share Document