scholarly journals Potential of Human Umbilical Cord Matrix and Rabbit Bone Marrow–Derived Mesenchymal Stem Cells in Repair of Surgically Incised Rabbit External Anal Sphincter

2009 ◽  
Vol 52 (10) ◽  
pp. 1753-1761 ◽  
Author(s):  
Mahmoud Aghaee-afshar ◽  
Mohammad Rezazadehkermani ◽  
Alireza Asadi ◽  
Reza Malekpour-afshar ◽  
Armita Shahesmaeili ◽  
...  
2013 ◽  
Vol 4 (5) ◽  
pp. 125 ◽  
Author(s):  
Andreia Ribeiro ◽  
Paula Laranjeira ◽  
Sandrine Mendes ◽  
Isabel Velada ◽  
Cristiana Leite ◽  
...  

2020 ◽  
Vol 18 (4) ◽  
pp. 290-296
Author(s):  
Jianye Wang ◽  
Junhui Zhang ◽  
Kongfu Zhu ◽  
Ping Zhou ◽  
Zhiguo Zhang

2017 ◽  
Vol 210 ◽  
pp. 64-75 ◽  
Author(s):  
Hanaa S.E. Mousa ◽  
Sally M. Shalaby ◽  
Zienab A. Gouda ◽  
Fayza E. Ahmed ◽  
Aisha A. El-Khodary

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2569-2569
Author(s):  
Robb Friedman ◽  
Monica Betancur ◽  
Hande Tuncer ◽  
Laurent Boissel ◽  
Curtis Cetrulo ◽  
...  

Abstract Umbilical cord blood (UCB) is a viable source of hematopoietic stem cells for transplantation of children and adults undergoing treatment for hematological malignancies. However only 4% of adults 70kg and over have a UCB unit available which contains the widely accepted minimum cell dose of 1.5x107 mononuclear cells per kilogram. Co-transplantation of hematopoietic stem cells with mesenchymal stem cells may enhance engraftment and therefore decrease transplant-related morbidity and mortality from delayed leukocyte recovery associated with a low pre-transplant cell dose. Umbilical cord matrix (UCM) cells, found in the Wharton’s Jelly, were easily and reliably extracted from minced pieces of cord by culture in RPMI + 20% fetal bovine serum at 37° and 5% humidified CO2. UCM expand best in 20% FBS but can also be expanded in human serum, autologous serum, and X-VIVO10. Small (1–3mm) minced pieces of umbilical cord can be cyropreserved at the time of delivery in 10% DMSO solution. UCM cells exhibit a fibroblast morphology and express markers common to mesenchymal stem cells: CD73 (SH3), CD105 (SH2), CD 29, CD44, CD49b, CD117, CD166, STRO-1 and HLA-DR. UCM are negative for CD14, CD 19, CD34, and CD45. Morphology and cell surface marker expression is stable after greater than fifteen passages. UCM cells grown in culture were shown to produce more GM-CSF and G-CSF than similar numbers of adult bone marrow mesenchymal stem cells, GM-CSF 178 pg/mL versus 77 pg/mL and G-CSF 82.6 pg/mL versus 7.9 pg/mL. NOD/SCID mice treated with anti-NK 1.1 antibodies and irradiated with 350 cGy were injected with suboptimal (1x104) numbers of cord blood CD34+ cells with and without 1x106 autologous UCM cells, extracted from the same umbilical cord as the cord blood CD34+ cells. Bone marrow was harvested at six weeks post transplant from both femurs and tibias and peripheral blood obtained via cardiac puncture. The percentage of human CD45+ cells in the bone marrow and the peripheral blood was assessed by flow cytometry. NOD/SCID mice transplanted with 1x104 cord blood CD34+ cells alone had 3.0% human CD45+ cell engraftment in the bone marrow and 3.6% human CD45+ cells in the peripheral blood, while NOD/SCID mice transplanted with 1x104 CD34+ cells and 1x106 UCM cells had an average of 27.3% human CD45+ cell engraftment in the bone marrow and 3.9% human CD45+ cells in the peripheral blood. These results indicate a trend towards improved engraftment in vivo with co-transplantation of suboptimal numbers of umbilical cord blood CD34+ cells and autologous umbilical cord matrix cells versus transplantation of suboptimal numbers of umbilical cord CD34+ cells alone.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Ana O. Pires ◽  
Andreia Neves-Carvalho ◽  
Nuno Sousa ◽  
António J. Salgado

The goal of this study was to determine and compare the effects of the secretome of mesenchymal stem cells (MSCs) isolated from human bone-marrow (BMSCs) and the Wharton jelly surrounding the vein and arteries of the umbilical cord (human umbilical cord perivascular cells (HUCPVCs)) on the survival and differentiation of a human neuroblastoma cell line (SH-SY5Y). For this purpose, SH-SY5Y cells were differentiated with conditioned media (CM) from the MSCs populations referred above. Retinoic acid cultured cells were used as control for neuronal differentiated SH-SY5Y cells. SH-SY5Y cells viability assessment revealed that the secretome of BMSCs and HUCPVCs, in the form of CM, was able to induce their survival. Moreover, immunocytochemical experiments showed that CM from both MSCs was capable of inducing neuronal differentiation of SH-SY5Y cells. Finally, neurite lengths assessment and quantitative real-time reverse-transcription polymerase chain reaction (RT-PCR) analysis demonstrated that CM from BMSCs and HUCPVCs differently induced neurite outgrowth and mRNA levels of neuronal markers exhibited by SH-SY5Y cells. Overall, our results show that the secretome of both BMSCs and HUCPVCs was capable of supporting SH-SY5Y cells survival and promoting their differentiation towards a neuronal phenotype.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Peng Li ◽  
Jinsong Wei ◽  
Xiang Gao ◽  
Bo Wei ◽  
Hao Lin ◽  
...  

Background. The functions of insulin in mesenchymal stem cells (MSC) remain poorly understood. Methods. MSC from human umbilical cord matrix (UCM) cultured in serum-free media (SFM) with or without insulin were subjected to various molecular biological analyses to determine their proliferation and growth states, expression levels of Akt-cyclin D1 signaling molecules, and in vitro differentiation capacities. Results. Insulin accelerated the G1-S cell cycle progression of UCM-MSC and significantly stimulated their proliferation and growth in SFM. The pro-proliferative action of insulin was associated with augmented cyclin D1 and phosphorylated Akt expression levels. Akt inactivation remarkably abrogated insulin-induced increases in cyclin D1 expression and cell proliferation, indicating that insulin enhances the proliferation of UCM-MSC via acceleration of the G1-S transition mediated by the Akt-cyclin D1 pathway. Additionally, the UCM-MSC propagated in SFM supplemented with insulin exhibited similar specific surface antigen profiles and differentiation capacities as those generated in conventional media containing fetal bovine serum. Conclusions. These findings suggest that insulin acts solely to promote UCM-MSC proliferation without affecting their immunophenotype and differentiation potentials and thus have important implications for utilizing insulin to expand clinical-grade MSC in vitro.


PLoS ONE ◽  
2014 ◽  
Vol 9 (10) ◽  
pp. e111059 ◽  
Author(s):  
Cristiana Leite ◽  
N. Tatiana Silva ◽  
Sandrine Mendes ◽  
Andreia Ribeiro ◽  
Joana Paes de Faria ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document