Simultaneous Ammonia Nitrogen and Phosphorus Removal from Micro-Polluted Water by Biological Aerated Filters with Different Media

2020 ◽  
Vol 231 (5) ◽  
Author(s):  
Yingbo Dong ◽  
Hai Lin ◽  
Xiri Zhang
2012 ◽  
Vol 588-589 ◽  
pp. 55-58
Author(s):  
Yong Feng Li ◽  
Jian Yu Yang ◽  
Guo Cai Zhang

Simulate sewage were used in an anaerobic-anoxic-aerobic biological nutrient removal system(A2O process), by observing the pHs in different compartments and its reflected changes in nitrogen and phosphorus removal, studied on the effects of different pHs on the removal of pollutants. The experiments indicates that the anaerobic phosphorus release showed the main performance of the decline of pH, denitrification in anoxic zone caused the rise of pH, uptake of phosphate in the aerobic zone mainly caused the continuous rise of pH. There is no evidently changes in COD removal, ammonia nitrogen get the highest removal as the pH value was between 8.0-8.5, when pH was at 6.5-7.5, the TN have the maximum removal rate, TP can keep in a high level when the pH was above 6.0.


1992 ◽  
Vol 25 (4-5) ◽  
pp. 281-287 ◽  
Author(s):  
P. T. Bowen ◽  
V. S. Magar ◽  
R. Otoski ◽  
T. McMonagle

To determine secondary treatment design parameters for the Massachusetts Water Resources Authority Deer Island Treatment Facility, a pilot study was conducted. Due to the constricted site, oxygen activated sludge processes were considered. A pilot-scale conventional oxygen activated sludge (COAS) and COAS preceded by an anaerobic selector process (ASP) were compared. Both processes achieved comparable levels of total and soluble BOD, total and soluble COD, total nitrogen, ammonia nitrogen, and phosphorus removal. Higher percent removals occurred during the spring and summer flow periods. Neither process appeared more stable than the other with respect to changing influent loading and hydraulic stress. Differences in the process were the sludge settleability and sludge yield. The ASP had a slightly higher sludge yield than COAS, but the solids settled faster.


2019 ◽  
Vol 1 (2) ◽  
pp. 97-99
Author(s):  
Samaneh Alijantabar aghouzi

Study on ammonia nitrogen and phosphorus removal using sequencing batch reactor Samaneh Alijantabar Aghouzi * Department of Chemical and Environmental Engineering, Faculty of Engineering Universiti Putra Malaysia, Serdang Malaysia   Thomas S. Y. Choong Sustainable Process Engineering Research Center (SPERC) Universiti Putra Malaysia, Serdang Malaysia   Aida Isma M. I. Centre for Water Research, Faculty of Engineering and the Built Environment SEGi University, Kota Damansara Malaysia   *Corrosponding author’s Email: [email protected]                   Peer-review under responsibility of 3rd Asia International Multidisciplanry Conference 2019 editorial board (http://www.utm.my/asia/our-team/) © 2019 Published by Readers Insight Publisher, lat 306 Savoy Residencia, Block 3 F11/1,44000 Islamabad. Pakistan, [email protected] This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).     _________________________________________________________   Research Highlights   The highest phosphorus and ammonia nitrogen removal efficiencies were 99.5% and 51%, respectively, in 6 hours. Particle size of sludge reduced from 26 μm to 39.81 μm in 60 days. Fourier transform infrared spectroscopy (FTIR) showed that N-O, N–H, S=O and C=N compunds detected. ___________________________________________________________________________   Research Objectives   Ammonia nitrogen and phosphorus removal have becoming more rigorous in permits making it one of the most important and most difficult processes to maintain in wastewater treatment plants. Sequencing batch reactor is a controlled activated sludge process that is able to tackle ammonia nitrogen and phosphorus issues and has some benefits such as having a small-scale system and low construction cost (1). The main goal of this research is to investigate the ability of SBR in treating sewage containing phosphorus and ammonia nitrogen in 6 hours to achieve the allowable effluent discharge standard set by the Department of Environment Malaysia.     Materials and Methods   In this experiment, a sequencing batch reactor with a total volume of 7 L. The mechanical stirrer was used to avoid sludge settling with a speed of 100 rpm. A fine bubble diffuser was used to supply air. The operation time was controlled based on 1 h and 30 mins anaerobic, 2 h and 10 mins anoxic, 1 h and 50 mins aerobic, making the hydraulic retention time (HRT) of 6 hours. 10 L seed sludge and 30 L raw sewage samples were collected weekly from the sewage treatment plant that was located in Selangor and were kept under 4oC in cold room in order to obtain fresh samples. The sludge volume was 30% of raw sewage volume in the reactor and the reactor refilled with 3.5 liters of raw sewage at the start point of the experiment. The experiment was carried out in room temperature of  27±3 oC with the pH value ranging from 6 to 8 and dissolve oxygen value ranging from 0 to 6 mg/L. Phosphorus and ammonia nitrogen were measured according to the APHA method (2). DO and PH were measured by using DO meter (JPB-70A) and PH meter (CT-6821, Shenzhen Kedida Electronic CO).     Results   The highest ammonia nitrogen removal efficiencies observed to be 31.9 %, 10.3 % and 38.8 % at the respective phases of anaerobic, anoxic and aerobic, respectively. Results showed that the phosphorus removal efficiencies for anaerobic, anoxic and aerobic phases were 70.43 %, 19.16%, and 98.58%, respectively in 6 hours. The highest phosphorus removal efficiency recorded was 98.58% that took place in the aerobic phase because of the absence of sufficient nitrate which can inhibit phosphorus uptake during the aerobic phase. The most sensitive process is nitrification that helps to biological oxidation of ammonia to nitrate, which is performed by two types of microorganisms, i.e. ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) (3). Karl et al. claimed that toxic substances inhibit the metabolism of bacteria (4). Mino et al. (5) also stated that nitrification process will not be accomplished in anaerobic phase without the presence of nitrate. This will affect the phosphorus uptake in the aeration phase.   Findings   FTIR spectrum shows that N-O, N–H, S=O and C=N compounds were identified in the sludge. The presence of these compounds might affect the nitrification and denitrification processes and indirectly affecting the degradation the ammonia nitrogen and phosphorus. Sewage sample might also contain heavy metals as the sewage treatment plant was located in the industrial area.     Acknowledgment   The authors gratefully thank the financial and research support of Universiti Putra Malaysia.   References Sathian, S, M Rajasimman, C S Rathnasabapathy, and C Karthikeyan. 2014. “Journal of Water Process Engineering Performance Evaluation of SBR for the Treatment of Dyeing Wastewater by Simultaneous Biological and Adsorption Processes.” Journal of Water Process Engineering 4: 82–90. APHA. Standard Methods For the examination of water and Wastewater 23rd ed. ed. Washington, D.C.2017. Chang HN, Moon RK, Park BG, Lim S, Choi DW. Simulation of sequential batch reactor ( SBR ) operation for simultaneous removal of nitrogen and phosphorus. 2000;23. Karl DM, States U. Nitrogen Cycle ☆. 3rd ed. Encyclopedia of Ocean Sciences, 3rd Edition. Elsevier Inc.; 2018. 1-10 p. Mino T, Loosdrecht MCM van, Heijnen JJ. Microbiology and biochemistry of the EBPR process. Water Res. 1998;32(11):3193–207.


2012 ◽  
Vol 518-523 ◽  
pp. 5347-5350
Author(s):  
Jia Xie ◽  
Xiao Xiang Zhao ◽  
Xin Shan Song ◽  
Jun Hu Wei

The successful cultivation of aerobic granular sludge used for simultaneous nitrogen and phosphorus removal in sequencing batch reactor (SBR) was performed using a synthetic domestic wastewater and conventional flocculent activated sludge as seeding sludge. The removal efficiency of sludge for chemical oxygen demand (COD),ammonia nitrogen and phosphate was 92.4%,88.1% and 95.9%, respectively. After screening, a strain was obtained with high efficient in nitrogen and phosphorus removal. By analyzing, the strain was identified as Raoultella ornithinolytica. After strain accumulation, the strain cultured at 30°C for 24h. The ammonia nitrogen and phosphate removal efficiency were 78.3% and 92%, respectively.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Katrin CALÁBKOVÁ ◽  
Michaela ČERVENKOVÁ

The need to treat wastewater in a sustainable way to minimalize contamination and maximize the recovery of nutrients is widelyrecognized. The focus is mainly on the removal and recovery of nutrients because of eutrophication problems in receiving waters,limitations of mining resources and high costs affiliated with nutrient production. Removal of nutrients is also a growing problemfor water authorities, as authorities often tighten standards of discharged waters to avoid unnecessary discharge of nutrients intowater bodies.The universally used technologies for nitrogen and phosphorus removal involve biological nitrification and denitrification and metalsalt precipitation. However, applying these technologies nutrients are made unrecoverable for fertilizing. Electrodialysis (ED) isa membrane process capable of concentrating and separating ions from wastewater. Thanks to the applied current, the migration ofions occurs, and ions are concentrated in the concentrate solution. Laboratory scale ED showed the potential of nutrient recoveryfrom wastewater sources.In this study, nutrients were recovered in concentrate solution from wastewater sludge liquid discharge by using electrodialysis.Calcium and sodium values in concentrated solution increased 10 times, values of potassium and chloride 5 times. The amount ofammonia nitrogen raised from 60 mg/l to 1700 mg/l. The concentrate enriched by nutrients may be used in further processes, e.g.phosphorus and ammonia nitrogen can be precipitated into the form of struvite.


2019 ◽  
Vol 136 ◽  
pp. 06027
Author(s):  
Hou-Yun Yang ◽  
Pei Xu ◽  
Hua-Yuan Wang ◽  
Wei-Hua Li ◽  
Shu-Guang Zhu

The removal efficiency of nitrogen and phosphorus is challenging in the conventional biological nitrogen and phosphorus removal processes. In this study, the modified pyrite was used as the fillings of se-quencing batch reactor (SBR) in order to improve the efficiencies of nitrogen and phosphorus removal from wastewater. The results showed that SBR with the modified pyrite could significantly improve the removal efficiencies of nitrogen and phosphorus when compared with that in SBR without fillings (control SBR). The average influent ammonia nitrogen (NH4+-N) and total phosphorus (TP) were 6.96±0.17 mg L-1 and 6.94±0.01 mg L-1, respectively. The average NH4+-N and TP removals of modified pyrite constructed SBR were 49.65±19.49% with 3.54±1.31 mg L-1 of average effluent NH4+-N and 76.20±6.55% with 1.84±0.46 mg L-1 of average effluent TP, respectively. While the average NH4+-N and TP removal efficiencies of con-trol SBR were only 34.76±11.28% and 56.28±0.11%. The mechanisms of the SBR with enhanced simulta-neous nitrogen and phosphorus removals might be anaerobic and aerobic oxidations of modified pyrite, and phosphorus retained in the SBR of modified pyrite was mostly in the form of Fe-bound-P.


2017 ◽  
Vol 14 (2) ◽  
pp. 99-106 ◽  
Author(s):  
Zhengan Zhang ◽  
Shulin Pan ◽  
Fei Huang ◽  
Xiang Li ◽  
Juanfang Shang ◽  
...  

2004 ◽  
Vol 31 (4) ◽  
pp. 349-356
Author(s):  
Li Na ◽  
Li Zhidong ◽  
Li Guode ◽  
Wang Yan ◽  
Wu Shiwei ◽  
...  

2000 ◽  
Vol 41 (9) ◽  
pp. 139-145
Author(s):  
R. Kayser

The German design guideline A 131 “Design of single stage activated sludge plants” was amended in 1999. The main changes of the guideline from 1991 are outlined. The design procedure for plants with nitrogen and phosphorus removal is presented.


Sign in / Sign up

Export Citation Format

Share Document