Adaptive Decode-and-Forward Protocol Based Cooperative Spectrum Sensing in Cognitive Radio with Interference at the Secondary Users

2014 ◽  
Vol 79 (2) ◽  
pp. 1417-1434 ◽  
Author(s):  
Chanchal Kumar De ◽  
Sumit Kundu
2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
S. Tephillah ◽  
J. Martin Leo Manickam

Security is a pending challenge in cooperative spectrum sensing (CSS) as it employs a common channel and a controller. Spectrum sensing data falsification (SSDF) attacks are challenging as different types of attackers use them. To address this issue, the sifting and evaluation trust management algorithm (SETM) is proposed. The necessity of computing the trust for all the secondary users (SUs) is eliminated based on the use of the first phase of the algorithm. The second phase is executed to differentiate the random attacker and the genuine SUs. This reduces the computation and overhead costs. Simulations and complexity analyses have been performed to prove the efficiency and appropriateness of the proposed algorithm for combating SSDF attacks.


2018 ◽  
Vol 7 (2.20) ◽  
pp. 335
Author(s):  
Shweta Alpna ◽  
Amrit Mukherjee ◽  
Amlan Datta

The proposed work illustrates a novel technique for cooperative spectrum sensing in a cognitive radio (CR) network. The work includes an approach of identifying secondary users (SUs) based on Hierarchical Maximum Likelihood (HML) technique followed by Vector Quantization. Initially, the arrangement of the SUs are been observed using HML with respect to a spatial domain and then the active SUs among them are identified using VQ. The approach will not only save the energy, but the decision of the real-time and dynamic cooperative communication network becomes more accurate as we can predict the behavior of SUs movement and spectrum sensing by each individual SU at that particular  place. The results and simulations of the real-time experiment justifies with the proposed approach. 


2020 ◽  
Author(s):  
Rahil Sarikhani ◽  
Farshid Keynia

Abstract Cognitive Radio (CR) network was introduced as a promising approach in utilizing spectrum holes. Spectrum sensing is the first stage of this utilization which could be improved using cooperation, namely Cooperative Spectrum Sensing (CSS), where some Secondary Users (SUs) collaborate to detect the existence of the Primary User (PU). In this paper, to improve the accuracy of detection Deep Learning (DL) is used. In order to make it more practical, Recurrent Neural Network (RNN) is used since there are some memory in the channel and the state of the PUs in the network. Hence, the proposed RNN is compared with the Convolutional Neural Network (CNN), and it represents useful advantages to the contrast one, which is demonstrated by simulation.


2019 ◽  
Vol 8 (3) ◽  
pp. 5176-5182

Sensing based spectrum allocation is one of the solutions to bridge the gap between spectrum scarcity and underutilization of allocated spectrum. In this context, cognitive radio technology has become the prominent solution for future wireless communication problems. To accurately detect the spectrum availability, CRN uses cooperative spectrum sensing where N number of selected nodes will be involved in making a decision on spectrum occupation. Various sensing parameters such as sensing duration (τ), decision threshold (λ), number of nodes (N) and decision rule (K) have huge impact on the performance of cooperative spectrum sensing. In addition, there are constraints on energy consumption and protection of licensed user’s needs to be considered. Our work focuses on optimization of sensing parameters to maximize the throughput of the cognitive radio network maintaining the energy efficiency and protecting the licensed users from the interference caused by the secondary users. The proposed work uses convex optimization to optimize sensing duration and two-dimensional search algorithm to find the values N and K. Further optimization is done by comparing local decision with cooperative decision.


Author(s):  
Utpala Borgohain ◽  
Surajit Borkotokey ◽  
S.K Deka

Cooperative spectrum sensing improves the sensing performance of secondary users by exploiting spatial diversity in cognitive radio networks. However, the cooperation of secondary users introduces some overhead also that may degrade the overall performance of cooperative spectrum sensing.  The trade-off between cooperation gain and overhead plays a vital role in modeling cooperative spectrum sensing.  This paper considers overhead in terms of reporting energy and reporting time. We propose a cooperative spectrum sensing based coalitional game model where the utility of the game is formulated as a function of throughput gain and overhead. To achieve a rational average throughput of secondary users, the overhead incurred is to be optimized. This work emphasizes on optimization of the overhead incurred. In cooperative spectrum sensing, the large number of cooperating users improve the detection performance, on the contrary, it increases overhead too. So, to limit the maximum coalition size we propose a formulation under the constraint of the probability of false alarm. An efficient fusion center selection scheme and an algorithm to select eligible secondary users for reporting are proposed to reduce the reporting overhead. We also outline a distributed cooperative spectrum sensing algorithm using the properties of the coalition formation game and prove that the utility of the proposed game has non-transferable properties.  The simulation results show that the proposed schemes reduce the overhead of reporting without compromising the overall detection performance of cooperative spectrum sensing.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Muhammad Sajjad Khan ◽  
Liaqat Khan ◽  
Noor Gul ◽  
Muhammad Amir ◽  
Junsu Kim ◽  
...  

Cognitive radio is an intelligent radio network that has advancement over traditional radio. The difference between the traditional radio and the cognitive radio is that all the unused frequency spectrum can be utilized to the best of available resources in the cognitive radio unlike the traditional radio. The core technology of cognitive radio is spectrum sensing, in which secondary users (SUs) opportunistically access the spectrum while avoiding interference to primary user (PU) channels. Various aspects of the spectrum sensing have been studied from the perspective of cognitive radio. Cooperative spectrum sensing (CSS) technique provides a promising performance, compared with individual sensing techniques. However, the existence of malicious users (MUs) highly degrades the performance of cognitive radio network (CRN) by sending falsified results to a fusion center (FC). In this paper, we propose a machine learning algorithm based on support vector machine (SVM) to classify legitimate SUs and MUs in the CRN. The proposed SVM-based algorithm is used for both classification and regression. It clearly classifies legitimate SUs and MUs by drawing a hyperplane on the base of maximal margin. After successful classification, the sensing results from the legitimate SUs are combined at the FC by utilizing Dempster-Shafer (DS) evidence theory. The effectiveness of the proposed SVM-based classification algorithm is demonstrated through simulations, compared with existing schemes.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1169
Author(s):  
Mohammad Asif Hossain ◽  
Rafidah Md Noor ◽  
Kok-Lim Alvin Yau ◽  
Saaidal Razalli Azzuhri ◽  
Muhammad Reza Z’aba ◽  
...  

A vehicle ad hoc network (VANET) is a solution for road safety, congestion management, and infotainment services. Integration of cognitive radio (CR), known as CR-VANET, is needed to solve the spectrum scarcity problems of VANET. Several research efforts have addressed the concerns of CR-VANET. However, more reliable, robust, and faster spectrum sensing is still a challenge. A novel segment-based CR-VANET (Seg-CR-VANET) architecture is therefore proposed in this paper. Roads are divided equally into segments, and they are sub-segmented based on the probability value. Individual vehicles or secondary users produce local sensing results by choosing an optimal spectrum sensing (SS) technique using a hybrid machine learning algorithm that includes fuzzy and naïve Bayes algorithms. We used dynamic threshold values for the sensing techniques. In this proposed cooperative SS, the segment spectrum agent (SSA) made the global decision using the tri-agent reinforcement learning (TA-RL) algorithm. Three environments (network, signal, and vehicle) are learned by this proposed algorithm to determine primary (licensed) users’ activities. The simulation results indicate that, compared to current works, the proposed Seg-CR-VANET produces better results in spectrum sensing.


2021 ◽  
Author(s):  
BALACHANDER T ◽  
Mukesh Krishnan M B

Abstract In the recent past, efficient cooperative spectrum sensing and usage are playing a vital role in wireless communication because of the significant progress of mobile devices. There is a recent surge and interest on Non-Orthogonal Multiple Access (NOMA) focused on communication powered by wireless mode. In modern research, more attention has been focused on efficient and accurate Non-Orthogonal Multiple Access (NOMA). NOMA wireless communication is highly adapted with Cognitive Radio Network (CRN) for improving performance. In the existing cognitive radio network, the secondary users could be able to access the idle available spectrum while primary users are engaged. In the traditional CRN, the primary user’s frequency bands are sensed as free, the secondary users could be utilized those bands of frequency resources. In this research, the novel methodology is proposed for cooperative spectrum sensing in CRN for 5G wireless communication using NOMA. The higher cooperative spectrum efficiency can be detected in the presence of channel noise. Cooperative spectrum sensing is used to improve the efficient utilization of spectrum. The spectrum bands with license authority primary user are shared by Secondary Users (SU) by simultaneously transmitting information with Primary Users (PU). The cooperative spectrum sensing provides well under the circumstances that the different channel interference to the primary user can be guaranteed to be negligible than an assured thresholding value. The Noisy Channel State Information (CSI) like AWGN and Rayleigh fading channels are considered as wireless transmission mediums for transmitting a signal using Multiple-Input-Multiple-Output (MIMO) NOMA to increase the number of users. The proposed NOMA is fascinated with significant benefits in CRN is an essential wireless communication method for upcoming 5G technology. From experimental results it has been proved that the novel methodology performance is efficient and accurate than existing methodologies by showing graphical representations and tabulated parameters.


Sign in / Sign up

Export Citation Format

Share Document