Performance of Uniform Concentric Circular Arrays in a Three-Dimensional Spatial Fading Channel Model

2015 ◽  
Vol 83 (4) ◽  
pp. 2949-2963 ◽  
Author(s):  
Jie Zhou ◽  
Hao Jiang ◽  
Hisakazu Kikuchi
2019 ◽  
Vol 16 (9) ◽  
pp. 62-78 ◽  
Author(s):  
Lei Tian ◽  
Jianhua Zhang ◽  
Haifeng Tan ◽  
Pan Tang ◽  
Guangyi Liu

2021 ◽  
pp. 004051752110018
Author(s):  
Rui Hua Yang ◽  
Chuang He ◽  
Bo Pan ◽  
Hongxiu Zhong ◽  
Cundong Xu

The task of the fiber transport channel (FTC) is to transport the fibers from the carding roller to the rotor. Its geometric position in the spinning machine has a strong influence on the characteristics of the airflow field and the trajectory of the fiber motion in both the rotor and the FTC. In this paper, a three-dimensional pumping rotor spinning channel model was established using ANSYS-ICEM-CFD software with three different positions of the FTC (positions a–c). Further, the simulations of air distribution were performed using Fluent software. In addition, the discrete phase model was used to fit the fiber motion trajectory in the rotor. The simulation results showed that among the three types of FTC, position b is the optimal condition. The gradients of airflow velocity in the channel at position b were greater than those of the other two positions, which is conducive to straightening of the fiber.


2012 ◽  
Vol 433-440 ◽  
pp. 5506-5511 ◽  
Author(s):  
Na Li ◽  
Hao Zhang ◽  
Jing Jing Wang ◽  
T. Aaron Gulliver

Two pulse waveforms are designed and analyzed for 60GHz pulse modulation systems. An indoor frequency selective fading channel model is introduced for single user 60GHz TH-PPM systems. The capacity with this channel model of a 60GHz TH-PPM system based on the designed pulses is derived. Performance results are presented to illustrate the effects of the pulse waveforms and channel properties on the channel capacity.


2021 ◽  
Author(s):  
Wen Yang ◽  
Lun Zhou ◽  
Junrong Qiu ◽  
Yun Tai

Abstract Three dimensional PWR-core analysis code CORAL is developed by Wuhan Second Ship Design and Research Institute. This code provides basic functions including three-dimensional power distribution, fine power reconstruction, fuel temperature distribution, critical search, control rod worth, reactivity coefficients, burnup and nuclide density distribution, etc. CORAL employ nodal expansion method to solve neutron diffusion equation, and the least square method is used to achieve few group constants, and sub-channel model and one-dimensional heat transfer is used to calculate fuel temperature and coolant density distribution, and burnup distribution and nuclide nuclear density could be obtained by solving macro-depletion and micro-depletion equation. The CORAL code is convenient to update and maintain in consider of modular, object-oriented programming technology. In order to analyze the computational accuracy of the CORAL code in small PWR-core and its capability to deal with heterogeneous, calculation analysis are carried out based on the material and geometry parameters of the SMART core. The core has 57 fuel assemblies, with 8, 20 or 24 gadolinium rods arranged in the fuel assemblies. In this paper, a quantitative comparison and analysis of the small PWR problem calculation results are carried out. Numerical results, including effective multiplication factor, assembly power distribution and pin power distribution, all agree well with the calculation results of OpenMC or Bamboo at both hot zero-power (HZP) and hot full-power (HFP) conditions.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Kai Zhang ◽  
Fangqi Zhang ◽  
Guoxin Zheng ◽  
Lei Cang

With the rapid development of high-mobility wireless communication systems, e.g., high-speed train (HST) and metro wireless communication systems, more and more attention has been paid to the wireless communication technology in tunnel-like scenarios. In this paper, we propose a three-dimensional (3D) nonstationary multiple-input multiple-output (MIMO) channel model with high-mobility wireless communication systems using leaky coaxial cable (LCX) inside a rectangular tunnel over the 1.8 GHz band. Taking into account single-bounce scattering under line-of-sight (LoS) and non-line-of-sight (NLoS) propagations condition, the analytical expressions of the channel impulse response (CIR) and temporal correlation function (T-CF) are derived. In the proposed channel model, it is assumed that a large number of scatterers are randomly distributed on the sidewall of the tunnel and the roof of the tunnel. We analyze the impact of various model parameters, including LCX spacing, time separation, movement velocity of Rx, and K-factor, on the T-CF of the MIMO channel model. For HST, the results of some further studies on the maximum speed of 360 km/h are given. By comparing the T-CF between the dipole MIMO system and the LCX-MIMO system, we can see that the performance of the LCX-MIMO system is better than that of the dipole MIMO system.


Sign in / Sign up

Export Citation Format

Share Document