Design of a Guitar Shaped UWB Antenna with Wide Band Notched Characteristics for Wireless Applications

Author(s):  
Deepa Negi ◽  
Rajesh Khanna ◽  
Jaswinder Kaur
2021 ◽  
Vol 9 (1) ◽  
pp. 22-31
Author(s):  
M. Saravanan, K. Devarajan

UltraWide Bandwidth (UWB) antenna with Deflected Ground Structure for wireless communication is presented in this paper. Our proposed antenna design is consisting of elliptical shape slot at patch and Quarter wave transmission line at the ground with multiband frequency operation in various wireless communications.An antenna is designed using FR4 substrate with permittivity value of 4.4 and thickness of 0.8 mm. The size of the antenna is 50 x 70 mm2presents a high gain of 4 dB with Ultra Wide Bandwidth. In proposed antenna quarter wave ground is imposed with Deflected Ground Structure to achieve overall size reduction. The ultra bandwidth antenna proposed in this paper operates at multiband frequencies centered at 3.0267 GHz, 6.1933 GHz, 9.1911 GHz, 12.1467 GHz, and 15.06 GHz with corresponding return loss of -24.0553 dB, -40.9292 dB, -20.7534 dB, -41.8718 dB, -30.1747 dB.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 529 ◽  
Author(s):  
Ch Ramakrishna ◽  
G A.E.Satish Kumar ◽  
P Chandra Sekhar Reddy

This paper presents a band notched WLAN self complementaryultra wide band antenna for wireless applications. The proposed antenna encounters a return loss (RL) less than -10dB for entire ultra wideband frequency range except band notched frequency. This paper proposes a hexagon shape patch, edge feeding, self complementary technique and defective ground structure. The antenna has an overall dimensionof 28.3mm × 40mm × 2mm, builton  substrate FR4 with a relative dielectric permittivity 4.4. And framework is simulated finite element method with help of high frequency structured simulator HFSSv17.2.the proposed antenna achieves a impedance bandwidth of 8.6GHz,  band rejected WLAN frequency range 5.6-6.5 GHz with  vswr is less than 2.


This article deals with the various designs of a novel compact microstrip fed UWB antenna to investigate the corresponding return losses of different structures. The dimension of the designed antenna is 33 x 19 x 1.9 mm3 with FR4 substrate and it can be operated from 2.846 - 11.7458 GHz. The effects of varying the structure of antenna are to exhibit the investigation of corresponding return losses. Different structures of antenna are simulated in Ansoft HFSS simulator. The results of return losses and radiation patterns are explored with the ultra wide band (UWB) rectangular Stair slot antenna. The modified structure of antenna shows the minimized return loss with an enhanced bandwidth that satisfies good UWB characteristics. Antenna performance can also be explored from the radiation behavior of the antenna which is relatively omni-directional pattern for rectangular Stair slot antenna


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Xiaoyin Li ◽  
Lianshan Yan ◽  
Wei Pan ◽  
Bin Luo

A novel compact coplanar waveguide- (CPW-) fed ultrawideband (UWB) printed planar volcano-smoke antenna (PVSA) with four band-notches for various wireless applications is proposed and demonstrated. The low-profile antenna consists of a C-shaped parasitic strip to generate a notched band at 8.01~8.55 GHz for the ITU band, two C-shaped slots, and an inverted U-shaped slot etched in the radiator patch to create three notched bands at 5.15~5.35 GHz, 5.75~5.85 GHz, and 7.25~7.75 GHz for filtering the WLAN and X-band satellite signals. Simulated and measured results both confirm that the proposed antenna has a broad bandwidth of 3.1~12 GHz with VSWR < 2 and good omnidirectional radiation patterns with four notched-bands.


2016 ◽  
Vol 19 (3) ◽  
pp. 1626-1634 ◽  
Author(s):  
Manish Sharma ◽  
Y.K. Awasthi ◽  
Himanshu Singh ◽  
Raj Kumar ◽  
Sarita Kumari

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
M. M. Islam ◽  
M. R. I. Faruque ◽  
M. T. Islam

A band-removal property employing microwave frequencies using complementary split ring resonators (CSRRs) is applied to design a compact UWB antenna wishing for the rejection of some frequency band, which is meanwhile exercised by the existing wireless applications. The reported antenna comprises optimization of a circular radiating patch, in which slotted complementary SRRs are implanted. It is printed on low dielectric FR4 substrate material fed by a partial ground plane and a microstrip line. Validated results exhibit that the reported antenna shows a wide bandwidth covering from 3.45 to more than 12 GHz, with a compact dimension of 22 × 26 mm2, and VSWR < 2, observing band elimination of 5.5 GHz WLAN band.


Sign in / Sign up

Export Citation Format

Share Document