Recognition of Indian Sign Language (ISL) Using Deep Learning Model

Author(s):  
Sakshi Sharma ◽  
Sukhwinder Singh
2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
M. M. Kamruzzaman

Sign language encompasses the movement of the arms and hands as a means of communication for people with hearing disabilities. An automated sign recognition system requires two main courses of action: the detection of particular features and the categorization of particular input data. In the past, many approaches for classifying and detecting sign languages have been put forward for improving system performance. However, the recent progress in the computer vision field has geared us towards the further exploration of hand signs/gestures’ recognition with the aid of deep neural networks. The Arabic sign language has witnessed unprecedented research activities to recognize hand signs and gestures using the deep learning model. A vision-based system by applying CNN for the recognition of Arabic hand sign-based letters and translating them into Arabic speech is proposed in this paper. The proposed system will automatically detect hand sign letters and speaks out the result with the Arabic language with a deep learning model. This system gives 90% accuracy to recognize the Arabic hand sign-based letters which assures it as a highly dependable system. The accuracy can be further improved by using more advanced hand gestures recognizing devices such as Leap Motion or Xbox Kinect. After recognizing the Arabic hand sign-based letters, the outcome will be fed to the text into the speech engine which produces the audio of the Arabic language as an output.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Feng Wen ◽  
Zixuan Zhang ◽  
Tianyiyi He ◽  
Chengkuo Lee

AbstractSign language recognition, especially the sentence recognition, is of great significance for lowering the communication barrier between the hearing/speech impaired and the non-signers. The general glove solutions, which are employed to detect motions of our dexterous hands, only achieve recognizing discrete single gestures (i.e., numbers, letters, or words) instead of sentences, far from satisfying the meet of the signers’ daily communication. Here, we propose an artificial intelligence enabled sign language recognition and communication system comprising sensing gloves, deep learning block, and virtual reality interface. Non-segmentation and segmentation assisted deep learning model achieves the recognition of 50 words and 20 sentences. Significantly, the segmentation approach splits entire sentence signals into word units. Then the deep learning model recognizes all word elements and reversely reconstructs and recognizes sentences. Furthermore, new/never-seen sentences created by new-order word elements recombination can be recognized with an average correct rate of 86.67%. Finally, the sign language recognition results are projected into virtual space and translated into text and audio, allowing the remote and bidirectional communication between signers and non-signers.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 182
Author(s):  
Aveen Dayal ◽  
Naveen Paluru ◽  
Linga Reddy Cenkeramaddi ◽  
Soumya J. ◽  
Phaneendra K. Yalavarthy

Hand gestures based sign language digits have several contactless applications. Applications include communication for impaired people, such as elderly and disabled people, health-care applications, automotive user interfaces, and security and surveillance. This work presents the design and implementation of a complete end-to-end deep learning based edge computing system that can verify a user contactlessly using ‘authentication code’. The ‘authentication code’ is an ‘n’ digit numeric code and the digits are hand gestures of sign language digits. We propose a memory-efficient deep learning model to classify the hand gestures of the sign language digits. The proposed deep learning model is based on the bottleneck module which is inspired by the deep residual networks. The model achieves classification accuracy of 99.1% on the publicly available sign language digits dataset. The model is deployed on a Raspberry pi 4 Model B edge computing system to serve as an edge device for user verification. The edge computing system consists of two steps, it first takes input from the camera attached to it in real-time and stores it in the buffer. In the second step, the model classifies the digit with the inference rate of 280 ms, by taking the first image in the buffer as input.


2020 ◽  
Vol 13 (4) ◽  
pp. 627-640 ◽  
Author(s):  
Avinash Chandra Pandey ◽  
Dharmveer Singh Rajpoot

Background: Sentiment analysis is a contextual mining of text which determines viewpoint of users with respect to some sentimental topics commonly present at social networking websites. Twitter is one of the social sites where people express their opinion about any topic in the form of tweets. These tweets can be examined using various sentiment classification methods to find the opinion of users. Traditional sentiment analysis methods use manually extracted features for opinion classification. The manual feature extraction process is a complicated task since it requires predefined sentiment lexicons. On the other hand, deep learning methods automatically extract relevant features from data hence; they provide better performance and richer representation competency than the traditional methods. Objective: The main aim of this paper is to enhance the sentiment classification accuracy and to reduce the computational cost. Method: To achieve the objective, a hybrid deep learning model, based on convolution neural network and bi-directional long-short term memory neural network has been introduced. Results: The proposed sentiment classification method achieves the highest accuracy for the most of the datasets. Further, from the statistical analysis efficacy of the proposed method has been validated. Conclusion: Sentiment classification accuracy can be improved by creating veracious hybrid models. Moreover, performance can also be enhanced by tuning the hyper parameters of deep leaning models.


2020 ◽  
Vol 197 ◽  
pp. 105674
Author(s):  
Dingding Yu ◽  
Kaijie Zhang ◽  
Lingyan Huang ◽  
Bonan Zhao ◽  
Xiaoshan Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document