Geographic patterns of predator niche breadth and prey species richness

2015 ◽  
Vol 31 (1) ◽  
pp. 111-115 ◽  
Author(s):  
Giuliano Milana ◽  
Manuela Lai ◽  
Luigi Maiorano ◽  
Luca Luiselli ◽  
Giovanni Amori
Diversity ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 169
Author(s):  
Danai-Eleni Michailidou ◽  
Maria Lazarina ◽  
Stefanos P. Sgardelis

The ongoing climate change and the unprecedented rate of biodiversity loss render the need to accurately project future species distributional patterns more critical than ever. Mounting evidence suggests that not only abiotic factors, but also biotic interactions drive broad-scale distributional patterns. Here, we explored the effect of predator-prey interaction on the predator distribution, using as target species the widespread and generalist grass snake (Natrix natrix). We used ensemble Species Distribution Modeling (SDM) to build a model only with abiotic variables (abiotic model) and a biotic one including prey species richness. Then we projected the future grass snake distribution using a modest emission scenario assuming an unhindered and no dispersal scenario. The two models performed equally well, with temperature and prey species richness emerging as the top drivers of species distribution in the abiotic and biotic models, respectively. In the future, a severe range contraction is anticipated in the case of no dispersal, a likely possibility as reptiles are poor dispersers. If the species can disperse freely, an improbable scenario due to habitat loss and fragmentation, it will lose part of its contemporary distribution, but it will expand northwards.


1985 ◽  
Vol 63 (7) ◽  
pp. 1519-1530 ◽  
Author(s):  
Barbara L. Peckarsky

Experiments in Colorado and New York streams assessed the effects of predaceous stoneflies on benthic invertebrate community establishment in enclosures providing uncolonized habitat. Aspects of prey community structure measured were density, species richness, relative species abundance, and body size. Unexpected inorganic sediment deposition allowed evaluation of direct effects on Colorado stream benthos and indirect effects on predation. Predaceous perlids and perlodids consistently reduced the density and, therefore, rate of prey community establishment in enclosures. Although New York perlids disproportionately reduced densities of some prey species, Colorado stoneflies caused nonsignificant declines in individual prey species densities, the composite effect of which was a significant whole-community response. Predators did not affect prey species richness nor change the taxonomic composition (species additions or deletions) of communities colonizing enclosures. However, the relative abundance of prey taxa differed significantly between cages with and without predators. Most species showed no size differences between individuals colonizing enclosures with predators and those colonizing control enclosures, with a few interesting exceptions. The deposition of silt eliminated the predator effects on prey density, as well as directly causing significant reductions in many Colorado benthic populations. This result demonstrates that abiotic disturbances can periodically override the effects of predation on stream insect communities colonizing enclosures.


2015 ◽  
Vol 282 (1819) ◽  
pp. 20151589 ◽  
Author(s):  
Alyssa R. Cirtwill ◽  
Daniel B. Stouffer ◽  
Tamara N. Romanuk

Several properties of food webs—the networks of feeding links between species—are known to vary systematically with the species richness of the underlying community. Under the ‘latitude–niche breadth hypothesis’, which predicts that species in the tropics will tend to evolve narrower niches, one might expect that these scaling relationships could also be affected by latitude. To test this hypothesis, we analysed the scaling relationships between species richness and average generality, vulnerability and links per species across a set of 196 empirical food webs. In estuarine, marine and terrestrial food webs there was no effect of latitude on any scaling relationship, suggesting constant niche breadth in these habitats. In freshwater communities, on the other hand, there were strong effects of latitude on scaling relationships, supporting the latitude–niche breadth hypothesis. These contrasting findings indicate that it may be more important to account for habitat than latitude when exploring gradients in food-web structure.


Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2170
Author(s):  
Elzbieta Dumnicka ◽  
Tanja Pipan ◽  
David Culver

Caves are the best studied aquatic subterranean habitat, but there is a wide variety of these habitats, ranging in depth below the surface and size of the spaces (pore or habitat size). Both factors are important in setting limits to species composition and richness. In addition to caves, among the most important shallow aquatic subterranean habitats are the hyporheal (underflow of rivers and streams), the hypotelminorheal (very superficial drainages with water exiting in seeps), epikarst, and calcrete aquifers. Although it is little studied, both body size and species composition in the different habitats is different. Because of high levels of endemism and difficulty in access, no subterranean habitats are well sampled, even caves. However, there are enough data for robust generalizations about some geographic patterns. Individual hotspot caves are concentrated in the Dinaric region of southern Europe, and overall, tropical regions have fewer obligate aquatic cave dwellers (stygobionts). In all subterranean aquatic habitats, regional diversity is much higher than local diversity, but local diversity (especially single cave diversity) may be a useful predictor of regional species richness. In Europe there is a ridge of high aquatic subterranean species richness basically extending east from the French–Spanish border. Its cause may be either high productivity or that long-term temperature oscillations are at a minimum. With increased collecting and analysis, global and continental trends should become clearer.


2016 ◽  
Vol 23 (4) ◽  
pp. 195-207 ◽  
Author(s):  
Paul W. Sammarco ◽  
Marissa F. Nuttall ◽  
Daniel Beltz ◽  
L. Horn ◽  
G. Taylor ◽  
...  

2020 ◽  
Vol 117 (27) ◽  
pp. 15450-15459 ◽  
Author(s):  
Torben Riehl ◽  
Anne-Cathrin Wölfl ◽  
Nico Augustin ◽  
Colin W. Devey ◽  
Angelika Brandt

Habitat heterogeneity and species diversity are often linked. On the deep seafloor, sediment variability and hard-substrate availability influence geographic patterns of species richness and turnover. The assumption of a generally homogeneous, sedimented abyssal seafloor is at odds with the fact that the faunal diversity in some abyssal regions exceeds that of shallow-water environments. Here we show, using a ground-truthed analysis of multibeam sonar data, that the deep seafloor may be much rockier than previously assumed. A combination of bathymetry data, ruggedness, and backscatter from a trans-Atlantic corridor along the Vema Fracture Zone, covering crustal ages from 0 to 100 Ma, show rock exposures occurring at all crustal ages. Extrapolating to the whole Atlantic, over 260,000 km2of rock habitats potentially occur along Atlantic fracture zones alone, significantly increasing our knowledge about abyssal habitat heterogeneity. This implies that sampling campaigns need to be considerably more sophisticated than at present to capture the full deep-sea habitat heterogeneity and biodiversity.


1988 ◽  
Vol 36 (4) ◽  
pp. 385 ◽  
Author(s):  
BR Maslin ◽  
L Pedley

Patterns of distribution are described for the three subgenera and nine sections that make up the Australian Acacia flora. Subgenus Phyllodineae (833 species) is widespread and contains 99% of the species; subgenus Acacia (six species) and subgenus Aculeiferum (one species) are poorly represented and virtually confined to the north of the continent. The geographic patterns of species-richness are strongly influenced by sections Phyllodineae (352 species), Juliflorae (219 species) and Plurinerves (178 species). Section Phyllodineae has centres of richness south of the Tropic of Capricorn in temperate and adjacent semiarid areas of eastern, south-eastern and south-western Australia. The section is poorly represented in the tropics. The closely related sections Juliflorae and Plurinerves predominate in the north of the continent, semiarid areas of the south-west, many rocky tablelands of the Arid Zone and along the Great Dividing Range and adjacent inland riverine lowland areas in eastern Australia. The remaining four sections contribute little to the overall patterns of species-richness. The principal speciespoor areas are sandy and fluvial lowland regions of the Arid Zone. In eastern Australia, sections Botrycephalae, Juliflorae, Phyllodineae and Plurinerves show discontinuous patterns of species-richness along the Great Dividing Range. All sections have species whose ranges terminate in the area of the McPherson-Macleay Overlap region.


2016 ◽  
Vol 36 (23) ◽  
Author(s):  
沈梦伟 SHEN Mengwei ◽  
陈圣宾 CHEN Shengbin ◽  
毕孟杰 BI Mengjie ◽  
陈文德 CHEN Wende ◽  
周可新 ZHOU Kexin

2009 ◽  
Vol 17 (6) ◽  
pp. 652 ◽  
Author(s):  
Lin Xin ◽  
Wang Zhi-heng ◽  
Tang Zhi-yao ◽  
Zhao Shu-qing ◽  
Fang Jing-yun

Sign in / Sign up

Export Citation Format

Share Document