Seasonal characteristics of water-soluble inorganic ions and carbonaceous aerosols in total suspended particulate matter at a rural semi-arid site, Kadapa (India)

2016 ◽  
Vol 24 (2) ◽  
pp. 1719-1734 ◽  
Author(s):  
G. Reshma Begam ◽  
C. Viswanatha Vachaspati ◽  
Y. Nazeer Ahammed ◽  
K. Raghavendra Kumar ◽  
R. R. Reddy ◽  
...  
2021 ◽  
Author(s):  
Ritu Jangirh ◽  
Sakshi Ahlawat ◽  
Rahul Arya ◽  
Arnab Mondal ◽  
Lokesh Yadav ◽  
...  

Abstract In the present study, total suspended particulate matter (TSP) samples were collected at 47 different sites (47 grids of 5 × 5 km2 area) of Delhi during winter (January-February 2019) in campaign mode. To understand the spatial variation of sources, TSP samples were analyzed for chemical compositions including carbonaceous species [organic carbon (OC), elemental carbon (EC) and water-soluble organic carbon (WSOC)], water-soluble total nitrogen (WSTN), water-soluble inorganic nitrogen (WSIN), polycyclic aromatic hydrocarbons (16 PAHs), water-soluble inorganic species (WSIS) (F−, Cl−, SO42−, NO2−, NO3−, PO43−, NH4+, Ca2+, Mg2+, Na+, and K+), and major & minor trace elements (B, Na, Mg, Al, P, S, Cl, K, Ca, Ti, Fe, Zn, Cr, Mn, Cu, As, Pd, F, and Ag). During the campaign, the maximum concentration of several components of TSP (996 µg/m3) was recorded at the Rana Pratap Bagh area representing a pollution hotspot of Delhi. The maximum concentrations of PAHs were recorded at Udhyog Nagar, a region close to heavily loaded diesel vehicles, small rubber factories, and waste burning areas. Higher content of Cl− and Cl−/Na+ ratio (> 1.7) suggests the presence of nonmarine anthropogenic sources of Cl− over Delhi. Minimum concentrations of OC, EC, WSOC, PAHs, and WSIS in TSP were observed at Kalkaji representing the least polluted area in Delhi. Enrichment factor < 5.0 at several locations and a significant correlation of Al with Mg, Fe, Ti, and Ca and C/N ratio indicated the abundance of mineral/crustal dust in TSP over Delhi. Principal component analysis (PCA) was also performed for the source apportionment of TSP and extracted soil dust was found to be the major contributor to TSP followed by biomass burning, open waste burning, secondary aerosol, and vehicular emissions.


2015 ◽  
Vol 49 (4) ◽  
pp. 263-270 ◽  
Author(s):  
MN Mondol ◽  
M Khaled ◽  
AS Chamon ◽  
SM Ullah

Aerosol particulate matter and trace gases were sampled at five locations in the city areas of Bangladesh. The sampling sites were selected in the city areas near motor vehicles run with heavy traffic. The average concentrations of total suspended particulate matter in city ambient air were 413.02, 292.63, 671.65, 184.09 and 301.13 ?g m-³ in Dhaka, Noakhali, Chittagong, Faridpur and Kustia, respectively, which were higher than the daily average value, given by WHO and US EPA standard. The highest SPM concentration is in Chittagong (671.65 ?g m-³) and the lowest in Faridpur (184.09 ?g m-³). The city areas studied fall in the ‘Unhealthy” to “Extremely Unhealthy’ class according to the Air Quality Index, 2003. Trace metal concentrations of total suspended particulate matter in city ambient air were analyzed. The reported previous Pb concentration in farmgate, Dhaka was 1238 ng m-3 by Biswas et al., (2003) and now shows a decreasing tendency, presumably due to the ban on the use of leaded fuel. The average results of trace metals have been compared to national and international standards. The Cu and Zn concentration of current study is found very high in comparison with other previously reported results. The air of Chittagong city is highly polluted. Motor vehicles, especially two stroke engine vehicles are increasingly major sources of air pollution in Chittagong. DOI: http://dx.doi.org/10.3329/bjsir.v49i4.22630 Bangladesh J. Sci. Ind. Res. 49(4), 263-270, 2014


Sign in / Sign up

Export Citation Format

Share Document