Esterification of sugarcane bagasse by citric acid for Pb2+ adsorption: effect of different chemical pretreatment methods

Author(s):  
Minh Trang Hoang ◽  
Tien Duc Pham ◽  
Thi Thuy Pham ◽  
Manh Khai Nguyen ◽  
Dang Thi To Nu ◽  
...  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Vihang S. Thite ◽  
Anuradha S. Nerurkar

Abstract After chemical pretreatment, improved amenability of agrowaste biomass for enzymatic saccharification needs an understanding of the effect exerted by pretreatments on biomass for enzymatic deconstruction. In present studies, NaOH, NH4OH and H2SO4 pretreatments effectively changed visible morphology imparting distinct fibrous appearance to sugarcane bagasse (SCB). Filtrate analysis after NaOH, NH4OH and H2SO4 pretreatments yielded release of soluble reducing sugars (SRS) in range of ~0.17–0.44%, ~0.38–0.75% and ~2.9–8.4% respectively. Gravimetric analysis of pretreated SCB (PSCB) biomass also revealed dry weight loss in range of ~25.8–44.8%, ~11.1–16.0% and ~28.3–38.0% by the three pretreatments in the same order. Release of soluble components other than SRS, majorly reported to be soluble lignins, were observed highest for NaOH followed by H2SO4 and NH4OH pretreatments. Decrease or absence of peaks attributed to lignin and loosened fibrous appearance of biomass during FTIR and SEM studies respectively further corroborated with our observations of lignin removal. Application of commercial cellulase increased raw SCB saccharification from 1.93% to 38.84%, 25.56% and 9.61% after NaOH, H2SO4 and NH4OH pretreatments. Structural changes brought by cell wall degrading enzymes were first time shown visually confirming the cell wall disintegration under brightfield, darkfield and fluorescence microscopy. The microscopic evidence and saccharification results proved that the chemical treatment valorized the SCB by making it amenable for enzymatic saccharification.


Sugar Tech ◽  
2011 ◽  
Vol 13 (3) ◽  
pp. 214-219 ◽  
Author(s):  
S. K. Uppal ◽  
Ramandeep Kaur ◽  
Poonam Sharma

2003 ◽  
Vol 38 (12) ◽  
pp. 1731-1738 ◽  
Author(s):  
D. Kumar ◽  
V.K. Jain ◽  
G. Shanker ◽  
A. Srivastava

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Rozina Rashid ◽  
Uroosa Ejaz ◽  
Firdous Imran Ali ◽  
Imran Ali Hashmi ◽  
Ahmed Bari ◽  
...  

Abstract Background Lignin in sugarcane bagasse (SB) hinders its utilization by microorganism, therefore, pretreatment methods are employed to make fermentable components accessible to the microbes. Multivariate analysis of different chemical pretreatment methods can aid to select the most appropriate strategy to valorize a particular biomass. Results Amongst methods tested, the pretreatment by using sodium hydroxide in combination with methyltrioctylammonium chloride, an ionic liquid, (NaOH+IL) was the most significant for xylanase production by Bacillus aestuarii UE25. Investigation of optimal levels of five significant variables by adopting Box-Behnken design (BBD) predicted 20 IU mL− 1 of xylanase and experimentally, a titer of 17.77 IU mL− 1 was obtained which indicated the validity of the model. The production kinetics showed that volumetric productivity of xylanase was much higher after 24 h (833.33 IU L− 1 h− 1) than after 48 h (567.08 IU L− 1 h− 1). The extracted xylan from SB induced more xylanase in the fermentation medium than pretreated SB or commercially purified xylan. Nuclear Magnetic Resonance, Fourier transform infrared spectroscopy and scanning electron microscopy of SB indicated removal of lignin and changes in the structure of SB after NaOH+IL pretreatment and fermentation. Conclusion Combined pretreatment of SB with alkali and methyltrioctylammonium chloride appeared better than other chemical methods for bacterial xylanase production and for the extraction of xylan form SB.


Author(s):  
F A Syamani ◽  
Sudarmanto ◽  
Subyakto ◽  
B Subiyanto

Author(s):  
Reinaldo Gaspar Bastos ◽  
Hil�ia Camargo Ribeiro Fran�a ◽  
Gabriela Chaves Da Silveira ◽  
Beatriz Da Silva Campanhol ◽  
Mariana Costa de Castro

2020 ◽  
Vol 3 (1) ◽  
pp. 59
Author(s):  
Maria Melania Golor ◽  
Dessy Rosma ◽  
Shella Permatasari Santoso ◽  
Felycia Soetaredjo ◽  
Maria Yuliana ◽  
...  

In this work, citric acid (CIT) is proposed as a harmless alternative to epichlorohydrin (ECH) for crosslinking in the synthesis of cellulose hydrogels. Sugarcane bagasse was utilized as a source of cellulose fibers. Cellulose fibers were disintegrated using the solvent-dissolution method before forming a gel-like solution. Subsequently, CIT was added to initiate crosslinking, and the behavior was evaluated by adding various amounts of citric acid (0, 20, 30, and 40 wt%). Cellulose hydrogel with a good mechanical strength (10 mm penetration depth) was obtained from crosslinking using 40 wt% of CIT (HCIT-4), which is comparable to ECH-cross-linked hydrogel (HECH) that has a penetration depth of 8 mm. A proper amount of CIT molecules allows the crosslinking of the cellulose fibers into the hydrogel. The FT-IR analysis reveals a C-O-C band blue-shifting for HCIT-4 compared to HECH, with a gap difference of 82 cm-1. The crystallinity from XRD patterns of HCIT-4 is comparable to that of HECH, which confirms that CIT can be used as a substitute for ECH. The adsorption ability was evaluated against methylene blue dye, the isotherm and kinetic adsorption models for the adsorption system were determined. Freundlich and pseudo-second-order models correlate well to isotherm and kinetics data, suggests that the adsorbent possesses heterogeneous surface sites which adsorption controlled by chemisorption. The prepared HCIT-4 was able to remove 24.88 mg methylene blue/g of the hydrogel at 70 °C, meanwhile HECH only able to remove 12.01 mg/g. The adsorption capacity was increased when adsorption temperature increased, suggesting endothermic behavior.


Sign in / Sign up

Export Citation Format

Share Document