scholarly journals Green method of stemming the tide of invasive marine and freshwater organisms by natural filtration of shipping ballast water

Author(s):  
Jebarathnam Prince Prakash Jeba Kumar ◽  
Shunmugavel Ragumaran ◽  
Ganesan Nandagopal ◽  
Vijaya Ravichandran ◽  
Ramana Murthy Mallavarapu ◽  
...  

Abstract Marine and freshwater pollution caused by transport of invasive species in shipping ballast water is a major global problem and will increase in magnitude as shipping of commodities increases in the future. An economical method to preclude biological organisms in the seawater used for ballast is to exclude them at the source port. Integrated natural filtration using onshore wells or seabed gallery systems has been thoroughly investigated for use as pretreatment for seawater desalination systems and has proven to be environmentally acceptable and economic. Thus, the use of this proven filtration technology to another issue, ballast water treatment, is an innovative method of providing marine organism free seawater by non-destructive means in port-based facilities. This method is ecosystem-friendly in that no chemicals or destructive processes are used. Design and construction of well or seabed gallery intake systems for production of ballast seawater are feasible in virtually all global port facilities.

2019 ◽  
Vol 262 ◽  
pp. 06006
Author(s):  
Aleksandra Krampikowska ◽  
Anna Adamczak – Bugno

Modern fiber-cement boards currently used in construction are made of natural raw materials such as cement, cellulose fibers and of polyvinyl alcohol (PVA) and water. They replaced the eternitic plates, which were harmful to health, originated by Ludwig Hatschek. Materials made of fiber-cement are used in construction industry as a building and finishing material for facades, internal walls and roofs. Therefore, they are exposed to environmental conditions including rainfall and temperature changes, and in particular to frequent temperature transition through 0°C in a 24-hour cycle (cyclic freezing-thawing). In addition, fibrous cement materials, primarily used as cladding elements, are exposed to exceptional conditions, which include the high temperature caused by fire. The article presents the results of experimental tests of flexural strength of cement fiber boards subjected to exceptional conditions, to which the operation of fire belongs. The paper also presents a proposal to use a non-destructive method of acoustic emission based on time-frequency analysis for testing fiber-cement boards. Interesting research results were obtained that allowed to trace the differences in the mechanisms of material destruction under the influence of the changing time of external factors.


1993 ◽  
Vol 50 (10) ◽  
pp. 2086-2093 ◽  
Author(s):  
A. Locke ◽  
D. M. Reid ◽  
H. C. van Leeuwen ◽  
W.G. Sprules ◽  
J. T. Carlton

During May–December 1990 and March–May 1991, 546 foreign ocean-going vessels entered the Laurentian Great Lakes and upper St. Lawrence River, areas protected by the Great Lakes Ballast Water Control Guidelines. Between 88 and 94% of the vessels exchanged their ballast water with seawater as required by the guidelines. Living representatives of 11 invertebrate phyla were sampled from ballast tanks. Between 14 and 33% of ships that exchanged freshwater ballast in midocean carried living freshwater-tolerant zooplankton at the time of entry to the Seaway, although these included many taxa already found in the Great Lakes. Four freshwater-tolerant zooplankton species that were identified as living specimens in ballast water have apparently not been recorded from the Great Lakes. Voluntary ballast water controls reduced but did not eliminate the risk of species invasion, since some ships did not comply with the guidelines, and even ships that did exchange ballast water could introduce viable freshwater-tolerant organisms into the Great Lakes. About half of the ballast water carried into the Seaway by ocean-going vessels and lakers each year originates from the St. Lawrence River, portions of which are not yet protected by any ballast controls.


Author(s):  
Valeriy Ivanovich Reshnyak ◽  
Alexander Ivanovich Kalyaush ◽  
Dmitry Igorevich Rochev

The paper considers the problem of transferring microorganisms with ballast water used in the ship operation. It is noted that the search for a solution to the above problem takes a significant amount of time and requires developing special purifying equipment for disinfecting ballast water. Currently, there are various plants ensuring the decreased number of microorganisms in the process of disinfection. There has been proposed a new technology for ballast water treatment and decontamination that involves depositing microorganisms, removing them from the total volume of ballast water followed by ozone treatment. Actually, the volume of water containing sediment and decontaminated with ozone is significantly less than the total volume of ballast water and makes up about 3-5% of it. Microorganisms depositing takes place due to coagulation and sedimentation. The diagram of the ballast water purification and disinfection technology has been presented. The basic circuit of the ballast water disinfection plant includes a ship's ballast tank, receiving pipeline, reagent tank, metering pump, coagulant, collector, bulkhead, contact column, ozone generator, dehydration device and ultraviolet lamps. The operating conditions of the ship plants have space and time limits. The above technological solutions infer carrying out some operations (coagulation, sedimentation) and disinfection by using the ultraviolet lamps inside the ballast tanks for saving space. The proposed technology can be applied both on board a ship and in the floating or onshore environmental protection equipment, for example, in the port facilities.


Author(s):  
J W Steeds

There is a wide range of experimental results related to dislocations in diamond, group IV, II-VI, III-V semiconducting compounds, but few of these come from isolated, well-characterized individual dislocations. We are here concerned with only those results obtained in a transmission electron microscope so that the dislocations responsible were individually imaged. The luminescence properties of the dislocations were studied by cathodoluminescence performed at low temperatures (~30K) achieved by liquid helium cooling. Both spectra and monochromatic cathodoluminescence images have been obtained, in some cases as a function of temperature.There are two aspects of this work. One is mainly of technological significance. By understanding the luminescence properties of dislocations in epitaxial structures, future non-destructive evaluation will be enhanced. The second aim is to arrive at a good detailed understanding of the basic physics associated with carrier recombination near dislocations as revealed by local luminescence properties.


Author(s):  
R.F. Sognnaes

Sufficient experience has been gained during the past five years to suggest an extended application of microreplication and scanning electron microscopy to problems of forensic science. The author's research was originally initiated with a view to develop a non-destructive method for identification of materials that went into objects of art, notably ivory and ivories. This was followed by a very specific application to the identification and duplication of the kinds of materials from animal teeth and tusks which two centuries ago went into the fabrication of the ivory dentures of George Washington. Subsequently it became apparent that a similar method of microreplication and SEM examination offered promise for a whole series of problems pertinent to art, technology and science. Furthermore, what began primarily as an application to solid substances has turned out to be similarly applicable to soft tissue surfaces such as mucous membranes and skin, even in cases of acute, chronic and precancerous epithelial surface changes, and to post-mortem identification of specific structures pertinent to forensic science.


2013 ◽  
Vol 64 (2) ◽  
pp. 21001 ◽  
Author(s):  
Jean-Luc Bodnar ◽  
Jean-Jacques Metayer ◽  
Kamel Mouhoubi ◽  
Vincent Detalle

Sign in / Sign up

Export Citation Format

Share Document