scholarly journals Correction to: Assessing potential aquatic toxicity of airport runoff using physicochemical parameters and Lemna gibba and Aliivibrio fischeri bioassays

Author(s):  
Olga C. Calvo ◽  
Gisela Quaglia ◽  
Anubhav Mohiley ◽  
Maria Cesarini ◽  
Andreas Fangmeier
2020 ◽  
Vol 27 (32) ◽  
pp. 40604-40617
Author(s):  
Olga C. Calvo ◽  
Gisela Quaglia ◽  
Anubhav Mohiley ◽  
Maria Cesarini ◽  
Andreas Fangmeier

2021 ◽  
Vol 16 (1) ◽  
pp. 107-117
Author(s):  
J.V. Cruz ◽  
W.L.E. Magalhães ◽  
P.H.G. Cademartori ◽  
D. J. Dorta ◽  
D.P. de Oliveira ◽  
...  

Many public health measures to mitigate the spread of SARS-CoV-2 were adopted worldwide, and particularly to the environmental measure of regular cleaning and disinfection of surfaces, the increased use of disinfectant products raises environmental concerns. Quaternary ammonium compounds (QACs), povidone-iodine (PVP-I), chloroxylenol (PCMX) and chlorhexidine (CHX) are the active ingredients of most disinfectant products due to their effectiveness against various microbiological agents. Although presenting antimicrobial efficacy, these biocides have been associated with impacts on aquatic life. For instance, QACs can induce toxicity to Aliivibrio fischeri and fish (different species). Gill and liver damages are verified in Cyprinus carpio after exposure to PVP-I. CHX induces toxic effects on algae, crustaceans, and fish embryos. PCMX can induce genotoxicity to rainbow trout and malformations on zebrafish embryos, as well as it can reduce the reproduction rate of Caenorhabditis elegans. Thus, the potential to cause negative consequences on human and environmental health has resulted in activities from the U.S. and European agencies to favor the use of safer and greener disinfectant products during the COVID-19 pandemic. This review article summarizes the main findings on the impacts of disinfectants (the most used) on aquatic life. This information may help prioritize disinfectants with lower impacts on the aquatic environment for daily use, and especially for high-frequency use as verified in the COVID-19 pandemic. Furthermore, this review may help identify knowledge gaps on the aquatic hazard of disinfectants, which may drive future studies on this matter and, lastly, contribute to the development of sustainable products.


2018 ◽  
Vol 24 (1) ◽  
Author(s):  
NITU SINGH ◽  
FATIMA SULTANA

India is a developing nation and is dependent on its natural resources for growth and development. Water, being one of the vital natural resource, must be used judicially for the sustainable development. Present study focuses on the analysis of physicochemical parameters (pH, Turbidity, Alkalinity, Total Hardness, Total dissolved solids, Conductivity, Chloride, Sulfate, Fluoride contents) of ground water and surface water in Kota City (Rajasthan). The study shows the adverse impact of exploitation and urbanization on water resources of Kota City (Rajasthan). Some physicochemical parameters exceed the desirable limits as defined by WHO and Indian Standards in the selected sites. The level of pollution in ground water and surface water of Kota City is increasing due to urbanization.


2017 ◽  
Vol 124 (3) ◽  
pp. 215-222 ◽  
Author(s):  
JR López ◽  
L Lorenzo ◽  
R Alcantara ◽  
JI Navas

2020 ◽  
Vol 6 (2) ◽  
pp. 23-28
Author(s):  
O. A. F Wokoma ◽  
◽  
O. S Edori ◽  

Wastewater samples were collected from an oil industry at the point of discharge for a period of two years, from January 2018 – December 2019. The wastewater samples were analyzed for different physicochemical parameters such as temperature, turbidity, total dissolved solids (TDS), total suspended solids (TSS), conductivity, pH, alkalinity, salinity, total hydrocarbon content (THC), biochemical oxygen demand (BOD) and chemical oxygen demand (COD) to examine their conformity to fulfill requirements as recommended by World Health Organization (WHO), Federal Ministry of Environment (FME) and Drinking Water Association (DWA). The results indicated that all the parameters in the discharged wastewater were within acceptable limits of the regulatory bodies. The field data showed that the investigated firm conformed to the law by carrying out proper procedures before discharging the effluents into the public drain and river. Therefore, the release of wastewater from the industry doesn't constitute a danger to the environment as well as aquatic organisms. Keywords: Physicochemical parameter, wastewater discharge, oil industry, environment, contaminants


1997 ◽  
Vol 35 (2-3) ◽  
pp. 7-14 ◽  
Author(s):  
A. Schnell ◽  
M. J. Sabourin ◽  
S. Skog ◽  
M. Garvie

As part of an extensive audit of the Alkaline-Peroxide Mechanical Pulping (APMPTM) plant at the Malette Quebec Inc. mill in St. Raymond, Que., effluents were sampled from various stages of the process for comprehensive chemical characterizations, aquatic toxicity testing and anaerobic biotreatability assessments. In addition, untreated and secondary treated combined effluent from the integrated paper mill were sampled to determine the effectiveness of a conventional activated sludge process at the mill site. During the one-day sampling period, the APMP plant processed a mixed wood furnish consisting of 50% spruce/balsam fir and 50% aspen, with a chemical charge of 3.5% sodium hydroxide and 3.8% hydrogen peroxide on oven-dry fibre, while the Machine Finish Coated (MFC) paper production rate was 100 odt/d (oven dry metric tonnes per day). Measured production-specific contaminant discharge loadings from the novel APMP process were 56 kg BOD5/odt and 155 kg COD/odt in a combined effluent flow of 28 m3/odt. Sources of process effluent were chip washing, three stages of wood chip pretreatment and chemical impregnation (i.e., Impressafiner stages), interstate washing and pulp cleaning. The three Impressafiner pressates were found to be the most concentrated (i.e., 12-26 g COD/L) and toxic streams. Microtox testing of the pressates revealed EC50 concentrations of 0.07-0.34% v/v. The warm and concentrated effluents generated by the non-sulphur APMP process were found to be highly amenable to anaerobic degradation as determined by batch bioassay testing. Filterable BOD5 and COD(f) of the process effluents were reduced by 87-95% and 70-77%, respectively, with corresponding theoretical methane yields being attained. Acid-soluble dissolved lignin compounds exhibited biorecalcitrance, as revealed by limited removals of 34-55%, and were the main constituents contributing to residual COD(f), while resin and fatty acids (RFA) were reduced by 80-94%. The conservatively operated full scale activated sludge treatment process achieved a similar high 74% COD(f) removal from the whole mill effluent, while BOD5 and RFA reductions were virtually complete and the treated effluent was non-toxic, as measured by Microtox.


2016 ◽  
Vol 30 (2) ◽  
pp. 202-212 ◽  
Author(s):  
Alexandre Milazo ◽  
Manoel Cruz ◽  
Eduardo Melo

Sign in / Sign up

Export Citation Format

Share Document