scholarly journals Correction to: Long-term statistical assessment of meteorological indicators and COVID-19 outbreak in hot and arid climate, Bahrain

Author(s):  
Adeb Qaid ◽  
Muhammad Farhan Bashir ◽  
Dilshan Remaz Ossen ◽  
Khurram Shahzad
Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1145
Author(s):  
Zhongyuan Chen ◽  
Hao Xu ◽  
Yanna Wang

This study reviews the monsoonal Yangtze and the arid Nile deltas with the objective of understanding how the process–response between river-basin modifications and delta-estuary ecological degradation are interrelated under contrasting hydroclimate dynamics. Our analysis shows that the Yangtze River had a long-term stepwise reduction in sediment and silicate fluxes to estuary due to dam construction since the 1960s, especially after the Three Gorges Dam (TGD) closed in 2003. By contrast, the Nile had a drastic reduction of sediment, freshwater, and silicate fluxes immediately after the construction of the Aswan High Dam (AHD) in 1964. Seasonal rainfall in the mid-lower Yangtze basin (below TGD) complemented riverine materials to its estuary, but little was available to the Nile coast below the AHD in the hyper-arid climate setting. Nitrogen (N) and phosphate (P) fluxes in both river basins have increased because of the overuse of N- and P-fertilizer, land-use changes, urbanization, and industrialization. Nutrient ratios (N:P:Si) in both delta-estuaries was greatly altered, i.e., Yangtze case: 75:1:946 (1960s–1970s), 86:1:272 (1980s–1990s) and 102:1:75 (2000s–2010s); and Nile case: 6:1:32 (1960s–1970s), 8:1:9 (1980s–1990s), and 45:1:22 (2013), in the context of the optimum of Redfield ratio (N:P:Si = 16:1:16). This led to an ecological regime shift evidenced by a long-term change in phytoplankton communities in the Yangtze estuary, where silicious algae tended to lose dominance since the end of the 1990s, when more toxic dinoflagellates began to emerge. In the Nile estuary, such a regime shift was indicated by the post-dam dramatic reduction in zooplankton standing crop and fish landings until the early 2000s when biological recovery occurred due to nutrient inputs from anthropogenic sources. Although the Yangtze had higher human impacts than the Nile in terms of population, industrialization, and fertilizer application, N concentrations in the Nile estuarine waters surpassed the Yangtze in recent decades. However, eutrophication in the Yangtze estuary is much more intensive than in the Nile, leading to the likelihood of its estuarine water becoming more acidic than ever before. Therefore, ecological degradation in both delta-estuaries does not follow a linear trajectory, due not only to different climate dynamics but also to human forcings. The comparative insights of this study should be incorporated into future integrated coastal management of these two important systems.


2021 ◽  
pp. 41-48
Author(s):  
Halina A. Kamyshenka

The results of a statistical assessment of the influence of changing weather and climatic conditions of the territory of Belarus on the productivity of the main winter cereal crops are presented in order to build computational models of productivity. The calculations were made with respect to the climatic component as a predictor, taking into account the deviations of air temperature and precipitation from the long-term climatic norm of months that have the most significant effect on the yield of the studied crops. For winter rye and wheat, adequate models of yield variability have been built. The research results are relevant for solving forecasting problems.


Solar Energy ◽  
2017 ◽  
Vol 157 ◽  
pp. 587-595 ◽  
Author(s):  
Ali Tahri ◽  
Santiago Silvestre ◽  
Fatima Tahri ◽  
Soumia Benlebna ◽  
Aissa Chouder

2012 ◽  
Vol 3 (4) ◽  
pp. 868-879 ◽  
Author(s):  
Innocent Kamwa ◽  
Annissa Heniche ◽  
Martin De Montigny ◽  
Richard Mailhot ◽  
Simon Lebeau ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document