Hydrochemical characteristics and groundwater quality in the thick loess deposits of China

Author(s):  
Shujian Li ◽  
He Su ◽  
Zhi Li
2019 ◽  
Vol 98 ◽  
pp. 01034 ◽  
Author(s):  
Mingjun Liu ◽  
Changlai Xiao ◽  
Xiujuan Liang

In this study, a hydrochemical investigation was conducted in Shuangliao city to identify the hydrochemical characteristics and the quality of groundwater using descriptive statistics and correlation matrices. And on that basis, combined with Analytic hierarchy process (AHP), an improved two-level fuzzy comprehensive evaluation method is used to evaluate the groundwater quality. The results indicate that the major cations and anions in groundwater are Ca2+ and HCO3-, respectively. The chemical types are mainly HCO3—Ca type water, some areas are complicated due to the influence of human activities. The evaluation results show that the water quality in the area is mostly III type water, and the groundwater quality in some areas is IV or V water due to the influence of primary geological conditions or human activities. The groundwater quality in the East Liaohe River Valley and Shuangliao urban area is relatively poor, and in the northwest part which is the saline alkali soil area is also relatively poor.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 783
Author(s):  
Feifei Chen ◽  
Leihua Yao ◽  
Gang Mei ◽  
Yinsheng Shang ◽  
Fansheng Xiong ◽  
...  

Groundwater is a valuable water source for drinking and irrigation purposes in semiarid regions. Groundwater pollution may affect human health if it is not pretreated and provided for human use. This study investigated the hydrochemical characteristics driving groundwater quality for drinking and irrigation purposes and potential human health risks in the Xinzhou Basin, Shanxi Province, North China. More specifically, we first investigated hydrochemical characteristics using a descriptive statistical analysis method. We then classified the hydrochemical types and analyzed the evolution mechanisms of groundwater using Piper and Gibbs diagrams. Finally, we appraised the groundwater quality for drinking and irrigation purposes using the entropy water quality index (EWQI). We assessed the associated human health risks for different age and sex groups through drinking intake and dermal contact pathways. Overall, we found that (1) Ca-HCO3 and Ca·Mg-HCO3 were the dominant hydrochemical types and were mainly governed by rock weathering and water–rock interactions. (2) Based on the EWQI classifications, 67.74% of the groundwater samples were classified as medium quality and acceptable for drinking purpose. According to the values of sodium adsorption ratio (SAR), residual sodium carbonate (RSC) and soluble sodium percentage (%Na), 90.32% of the samples were suitable for irrigation, while the remaining samples were unfit for irrigation because of the high salinity in the groundwater. (3) Some contaminants in the groundwater, such as NO3−, NO2− and F−, exceeded the standard limits and may cause potential risks to human health. Our work presented in this paper could establish reasonable management strategies for sustainable groundwater quality protection to protect public health.


2015 ◽  
Vol 74 (7) ◽  
pp. 6265-6281 ◽  
Author(s):  
Ramin Sarikhani ◽  
Artimes Ghassemi Dehnavi ◽  
Zeinab Ahmadnejad ◽  
Nasrollah Kalantari

2021 ◽  
Vol 13 (22) ◽  
pp. 12586
Author(s):  
Jian Sun ◽  
Baizhong Yan ◽  
Yao Li ◽  
Huixiao Sun ◽  
Yahui Wang ◽  
...  

With the development of the human population and society, groundwater environmental problems have become an important factor limiting global socioeconomic development, and the study of groundwater hydrochemical characteristics and pollution is a current hot issue. In this study, data regarding shallow groundwater quality in 76 instances were used to evaluate the quality of shallow groundwater in the plains of Henan Province, China, by using a combination of subjective and objective assignments, mathematical statistics, Piper trilinear diagram, Gibbs diagram, ion ratio analysis, and other methods to study the hydrochemical characteristics of groundwater and its formation mechanism. The results showed that the groundwater quality in most areas of the plains of Henan Plain is in good condition, and the proportion of samples with excellent grades and good grades is as high as 43.42% and 35.53%. The range of poor and extremely poor water quality is small, and only five samples are judged as poor and extremely poor grades, mainly distributed in Jiaozuo City, Xinxiang City, Zhoukou City, and Puyang City. The groundwater anionic hydrochemistry is mainly of the HCO3 type, accounting for 61.84% of the samples and locally transformed downstream to HCO3·SO4, HCO3·SO4·Cl, HCO3·Cl·SO4, and Cl·SO4·HCO3. Cations are predominantly of the Ca/Mg and Ca–Mg/Mg–Ca type, and gradually transformed to the Na–Ca/Ca–Na and Na–Mg/Mg–Na type along the runoff direction. Water–rock interactions and anthropogenic factors dominate the hydrochemistry evolution, with major geochemical processes involving the precipitation of calcite and dolomite as well as the weathering dissolution of rock salt and fluorite. Human activity is an important factor affecting the distribution of NO3–N and Fe3+. It is recommended that groundwater be continuously monitored to provide scientific data for sustainable groundwater quality management and that appropriate measures be developed to prevent further degradation of the groundwater environment.


2009 ◽  
Vol 6 (s1) ◽  
pp. S211-S218 ◽  
Author(s):  
D. S. Rajendra Prasad ◽  
C. Sadashivaiah ◽  
G. Rangnna

The study area, Tumkur amanikere lake watershed, is located 0.5 km away from Tumkur Town on National Highway No.4. The main source of water for this lake is Kallur village tank catchment area. The average rainfall in the area is 965 mm. The submersion area of the lake at MWL is 204 hectares. Groundwater samples were collected from 22 stations covering the area during the year 2008 and were analyzed for physicochemical characters. The type of water that predominated in the study area is Ca-Mg-Cl type, was assessed based on hydrochemical facies. Besides, suitability of groundwater for irrigation was evaluated based on sodium adsorption ratio, percent sodium, and the US salinity diagrams.


Sign in / Sign up

Export Citation Format

Share Document