scholarly journals Correlation assessment of NDVI and land use dynamics with water resources for the southern margin of Mu Us Sandy Land, China

Author(s):  
Menglong Zhao ◽  
Yu Wang ◽  
Siyuan Liu ◽  
Ping-an Zhong ◽  
Hongzhen Liu ◽  
...  
2021 ◽  
Author(s):  
Menglong Zhao ◽  
Yu Wang ◽  
Siyuan Liu ◽  
Ping-an Zhong ◽  
Hongzhen Liu ◽  
...  

Abstract To prevent desertification, countries all over the world have made diversified efforts and vegetation restoration has been proved to be an effective approach. However, for sandy land that has limited water resources, measures such as artificial vegetation, may lead to the increase risk of drought. While affirming the achievements of sand utilization, there are many controversies exist regarding the advantages of turning deserts green, especially considering the water scarcity. Therefore, the long-run and causal relationships between sandy land, water consumption and vegetation coverage are necessary for explorations. Taken the southern margin of the Mu Us Sandy Land as the study area, this study explored the interactions between sandy land, water consumption and NDVI over a period of 2000–2018 with a VAR model approach. In the study area, various revegetation projects have made great achievements, resulting in a significant reduction of the sandy land area. In addition, the NDVI has ascend from 0.196 in 2000 to 0.371 in 2018 with a ratio of 89.3%. Results showed that there exist long-term stable equilibrium and causal relationships between water consumption with sandy land and NDVI. The increase of NDVI is relatively the direct factor causes the increase of water consumption. It could be inferred that those artificial vegetation measures may be based on large amount of water consumption, which may aggravate further water shortage and ecological damage. More scientific and stronger water resources management measures need to be implemented locally to achieve a balance between water resources and revegetation.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 101
Author(s):  
Antonio J. Mendoza-Fernández ◽  
Araceli Peña-Fernández ◽  
Luis Molina ◽  
Pedro A. Aguilera

Campo de Dalías, located in southeastern Spain, is the greatest European exponent of greenhouse agriculture. The development of this type of agriculture has led to an exponential economic development of one of the poorest areas of Spain, in a short period of time. Simultaneously, it has brought about a serious alteration of natural resources. This article will study the temporal evolution of changes in land use, and the exploitation of groundwater. Likewise, this study will delve into the technological development in greenhouses (irrigation techniques, new water resources, greenhouse structures or improvement in cultivation techniques) seeking a sustainable intensification of agriculture under plastic. This sustainable intensification also implies the conservation of existing natural areas.


2021 ◽  
Vol 13 (6) ◽  
pp. 3473
Author(s):  
Yong Lai ◽  
Guangqing Huang ◽  
Shengzhong Chen ◽  
Shaotao Lin ◽  
Wenjun Lin ◽  
...  

Anthropogenic land-use change is one of the main drivers of global environmental change. China has been on a fast track of land-use change since the Reform and Opening-up policy in 1978. In view of the situation, this study aims to optimize land use and provide a way to effectively coordinate the development and ecological protection in China. We took East Guangdong (EGD), an underdeveloped but populous region, as a case study. We used land-use changes indexes to demonstrate the land-use dynamics in EGD from 2000 to 2020, then identified the hot spots for fast-growing areas of built-up land and simulated land use in 2030 using the future land-use simulation (FLUS) model. The results indicated that the cropland and the built-up land changed in a large proportion during the study period. Then we established the ecological security pattern (ESP) according to the minimal cumulative resistance model (MCRM) based on the natural and socioeconomic factors. Corridors, buffer zones, and the key nodes were extracted by the MCRM to maintain landscape connectivity and key ecological processes of the study area. Moreover, the study showed the way to identify the conflict zones between future built-up land expansion with the corridors and buffer zones, which will be critical areas of consideration for future land-use management. Finally, some relevant policy recommendations are proposed based on the research result.


Hydrology ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 38
Author(s):  
Nick Martin

Climate and land use and land cover (LULC) changes will impact watershed-scale water resources. These systemic alterations will have interacting influences on water availability. A probabilistic risk assessment (PRA) framework for water resource impact analysis from future systemic change is described and implemented to examine combined climate and LULC change impacts from 2011–2100 for a study site in west-central Texas. Internally, the PRA framework provides probabilistic simulation of reference and future conditions using weather generator and water balance models in series—one weather generator and water balance model for reference and one of each for future conditions. To quantify future conditions uncertainty, framework results are the magnitude of change in water availability, from the comparison of simulated reference and future conditions, and likelihoods for each change. Inherent advantages of the framework formulation for analyzing future risk are the explicit incorporation of reference conditions to avoid additional scenario-based analysis of reference conditions and climate change emissions scenarios. In the case study application, an increase in impervious area from economic development is the LULC change; it generates a 1.1 times increase in average water availability, relative to future climate trends, from increased runoff and decreased transpiration.


Sign in / Sign up

Export Citation Format

Share Document