scholarly journals Comparison of generic and product-specific Life Cycle Assessment databases: application to construction materials used in building LCA studies

2015 ◽  
Vol 20 (11) ◽  
pp. 1473-1490 ◽  
Author(s):  
Sébastien Lasvaux ◽  
Guillaume Habert ◽  
Bruno Peuportier ◽  
Jacques Chevalier
Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3549
Author(s):  
Tulane Rodrigues da Silva ◽  
Afonso Rangel Garcez de Azevedo ◽  
Daiane Cecchin ◽  
Markssuel Teixeira Marvila ◽  
Mugahed Amran ◽  
...  

The urbanization process contributes to the growth of solid waste generation and causes an increase in environmental impacts and failures in the management of solid waste. The number of dumps is a concern due to the limited implementation and safe disposal of this waste. The interest in sustainable techniques has been growing in relation to waste management, which is largely absorbed by the civil construction sector. This work aimed to review plastic waste, especially polyethylene terephthalate (PET), that can be incorporated with construction materials, such as concrete, mortars, asphalt mixtures, and paving. The use of life-cycle assessment (LCA) is related, as a tool that allows the sustainability of products and processes to be enhanced in the long term. After analyzing the recent literature, it was identified that studies related to plastic wastes in construction materials concentrate sustainability around the alternative destination of waste. Since the plastic waste from different production chains are obtained, it was possible to affirm the need for a broader assessment, such as the LCA, providing greater quantification of data making the alternative processes and products more sustainable. The study contributes to enhance sustainability in alternative building materials through LCA.


Author(s):  
Tomasz Siwowski ◽  
Aleksander Kozlowski ◽  
Leonard Ziemiański ◽  
Mateusz Rajchel ◽  
Damian Kaleta

<p>Technology and materials can help cities get smarter and cope with rapid urbanisation. Life cycle assessment (LCA) is one of the approaches applied in evaluation of material sustainability. Many significant LCA comparisons of innovative and traditional construction materials indicate that fibre- reinforced polymer (FRP) composites compare very favourably with other materials studied. As a proposal for rapid urbanisation, the FRP all-composite road bridge was developed and demonstrated in Poland. The paper describes the bridge system itself and presents the results of research on its development. The output of the R&amp;D project gives a very promising future for the FRP composite bridge application in Poland, especially for cleaner, resilient and more environmentally efficient infrastructure of fast-growing cities.</p>


2017 ◽  
Vol 144 ◽  
pp. 121-130 ◽  
Author(s):  
Sara Marcelino-Sadaba ◽  
John Kinuthia ◽  
Jonathan Oti ◽  
Andres Seco Meneses

2011 ◽  
Vol 243-249 ◽  
pp. 5275-5279
Author(s):  
Hai Bei Xiong ◽  
Yang Zhao

Life cycle assessment (LCA) of a building is a new methodology which accepted as one of the best ways to estimate the environment impacts of a building during its life. In this paper, LCA analysis on a primary school wooden dormitory was conducted using Athena software firstly. Then two others construction materials, namely, concrete and brick, were assumed to be adopted to construct the dormitory. Also the LCA analysis was conducted on the two dormitories using concrete and brick. The comparison on LCA results of the three buildings using different construction materials showed that the dormitory constructed by wood is relatively greener than that of dormitory constructed by concrete and brick.


2019 ◽  
Vol 11 (21) ◽  
pp. 6000 ◽  
Author(s):  
Al-Nuaimi ◽  
Banawi ◽  
Al-Ghamdi

Environmental and economic cycles under varying geopolitical uncertainties can lead to unsustainable patterns that significantly and negatively affect the welfare of nations. With the ever-increasing negative environmental and economic impacts, the ability to achieve sustainability is hindered if the implications are not properly assessed in challenging geopolitical crises. The infrequent and fluctuating nature of these challenging geopolitical settings causes disregard and neglect for exploration within this issue. In this study, a comparative life cycle assessment was conducted as a method to evaluate the environmental and economic impacts of construction material flow across country boundaries. Based on the results found from the life cycle assessment, an environmental forecast and sensitivity analysis were established. Considering the State of Qatar as a case study, asphalt and bitumen, cement, limestone, sand, and steel were analyzed from gate-to-gate depending on transportation mode and distances used within both the pre-crisis and post-crisis sub-periods, comparing carbon emissions and costs. The results showed that the mode of transport plays a significant role in terms of carbon dioxide emissions as opposed to distance traveled. However, the increase in distance coupled to the majority shift from land to sea-based transport resulted in an overall increase in carbon emissions and costs post-crisis. In addition, the analysis of the environmental and economic impact assessment using the average CO2 equivalent (CO2-e) per kilogram and the unit price of the five primary construction materials has shown a significant, 70.68% increase in global warming potentials (GWP) after the crisis, coupled with an increase in the overall cost. An assessment of environmental and economic impacts during geopolitical uncertainties allows for the significant ability to realize sustainable measures to greatly reduce economic and environmental degradation.


2009 ◽  
Vol 16-19 ◽  
pp. 1091-1095
Author(s):  
Stuart Tomlinson ◽  
Chang J. Wang ◽  
Colin Morgan

This paper provides an analysis of the carbon emissions of materials used by a water company in the refurbishment of mechanical and electrical equipment at its pumping station. A tool for attaining life cycle calculations for embodied carbon, which can be applied in similar applications, is developed. Due to uncertainties in the derivation of numerical data and other related information, such as sources of raw materials, the embodied carbon emissions are calculated and analyzed using material emission factors using the Life Cycle Assessment method. This work may be used as a template for organizations requiring estimates of embodied carbon in materials and plant, for example, as a precursor to a major refurbishment project.


2016 ◽  
Vol 688 ◽  
pp. 204-209 ◽  
Author(s):  
Jozef Mitterpach ◽  
Jozef Štefko

The main objective of this paper thesis is to determine the environmental impact of two houses made of two alternative materials - a wooden and a brick house - using a Life Cycle Assessment (LCA). By comparing the material composition of their design to determine the environmental impacts of global warming, human health, consumption of resources and ecosystem quality. An overall comparison showed that the materials for the construction of a wooden house have less negative impact on the environment than materials for the construction of a brick house. Using the GWP method, results show that the materials for the construction of a brick house leave twice the carbon footprint in the environment than materials for a wooden house. This resultant state is mainly due to the use of natural materials in the wooden house (wood, fibre insulation), unlike the materials used in the brick house (ceramic masonry, insulation from stone wool) and so on.


Sign in / Sign up

Export Citation Format

Share Document