scholarly journals Moving beyond land use intensity types: assessing biodiversity impacts using fuzzy thinking

Author(s):  
Jan Paul Lindner ◽  
Ulrike Eberle ◽  
Eva Knuepffer ◽  
Carla R. V. Coelho

Abstract Purpose The impact of land use on biodiversity is a topic that has received considerable attention in life cycle assessment (LCA). The methodology to assess biodiversity in LCA has been improved in the past decades. This paper contributes to this progress by building on the concept of conditions for maintained biodiversity. It describes the theory for the development of mathematical functions representing the impact of land uses and management practices on biodiversity. Methods The method proposed here describes the impact of land use on biodiversity as a decrease in biodiversity potential, capturing the impact of management practices. The method can be applied with weighting between regions, such as ecoregions. The biodiversity potential is calculated through functions that describe not only parameters which are relevant to biodiversity, for example, deadwood in a forest, but also the relationships between those parameters. For example, maximum biodiversity would hypothetically occur when the nutrient balance is ideal and no pesticide is applied. As these relationships may not be readily quantified, we propose the use of fuzzy thinking for biodiversity assessment, using AND/OR operators. The method allows the inclusion of context parameters that represent neither the management nor the land use practice being investigated, but are nevertheless relevant to biodiversity. The parameters and relationships can be defined by either literature or expert interviews. We give recommendations on how to create the biodiversity potential functions by providing the reader with a set of questions that can help build the functions and find the relationship between parameters. Results and discussion We present a simplified case study of paper production in the Scandinavian and Russian Taiga to demonstrate the applicability of the method. We apply the method to two scenarios, one representing an intensive forestry practice, and another representing lower intensity forestry management. The results communicate the differences between the two scenarios quantitatively, but more importantly, are able to provide guidance on improved management. We discuss the advantages of this condition-based approach compared to pre-defined intensity classes. The potential drawbacks of defining potential functions from industry-derived studies are pointed out. This method also provides a less strict approach to a reference situation, consequently allowing the adequate assessment of cases in which the most beneficial biodiversity state is achieved through management practices. Conclusions The originality of using fuzzy thinking is that it enables land use management practices to be accounted for in LCA without requiring sub-categories for different intensities to be explicitly established, thus moving beyond the classification of land use practices. The proposed method is another LCIA step toward closing the gap between land use management practices and biodiversity conservation goals.

2017 ◽  
Vol 47 (2) ◽  
pp. 95-112 ◽  
Author(s):  
Peter Rončák ◽  
Evelin Lisovszki ◽  
Ján Szolgay ◽  
Kamila Hlavčová ◽  
Silvia Kohnová ◽  
...  

AbstractThe effects of land use management practices on surface runoff are evident on a local scale, but evidence of their impact on the scale of a watershed is limited. This study focuses on an analysis of the impact of land use changes on the flood regime in the Myjava River basin, which is located in Western Slovakia. The Myjava River basin has an area of 641.32 km2and is typified by the formation of fast runoff processes, intensive soil erosion, and muddy floods. The main factors responsible for these problems with flooding and soil erosion are the basin’s location, geology, pedology, agricultural land use, and cropping practices. The GIS-based, spatially distributed WetSpa rainfall-runoff model was used to simulate mean daily discharges in the outlet of the basin as well as the individual components of the water balance. The model was calibrated based on the period between 1997 and 2012 with outstanding results (an NS coefficient of 0.702). Various components of runoff (e.g., surface, interflow and groundwater) and several elements of the hydrological balance (evapotranspiration and soil moisture) were simulated under various land use scenarios. Six land use scenarios (‘crop’, ‘grass’, ‘forest’, ‘slope’, ‘elevation’ and ‘optimal’) were developed. The first three scenarios exhibited the ability of the WetSpa model to simulate runoff under changed land use conditions and enabled a better adjustment of the land use parameters of the model. Three other “more realistic” land use scenarios, which were based on the distribution of land use classes (arable land, grass and forest) regarding permissible slopes in the catchment, confirmed the possibility of reducing surface runoff and maximum discharges with applicable changes in land use and land management. These scenarios represent practical, realistic and realizable land use management solutions and they could be economically implemented to mitigate soil erosion processes and enhance the flood protection measures in the Myjava River basin.


2012 ◽  
Vol 163 (12) ◽  
pp. 464-468
Author(s):  
Robert Huber ◽  
Ariane Walz ◽  
Andreas Rigling

Sustainable agriculture and forestry in mountain regions: the “Mountland” project Future climate and land-use changes are key challenges to maintain forest ecosystem goods and services especially in mountain regions. In this context, the goal of the “Mountland” project was to investigate the sensitivity of the provision of mountain ecosystem services to both climatic and land-use changes, and to suggest policies and governance structures for mitigating the impact of such changes and enhancing sustainable management practices in mountain regions. An integrative approach was applied in the project, combining methods from economics and the political and natural sciences. This introductory article of the present special issue illustrates the conceptual framework, presents the case study regions and the overall research questions of the project. This forms the basis for the five articles of this special issue which summarize the research with respect to forest ecosystems and policy.


Land ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 234
Author(s):  
Dong Han ◽  
Jiajun Qiao ◽  
Qiankun Zhu

Rural-spatial restructuring involves the spatial mapping of the current rural development process. The transformation of land-use morphologies, directly or indirectly, affects the practice of rural restructuring. Analyzing this process in terms of the dominant morphology and recessive morphology is helpful for better grasping the overall picture of rural-spatial restructuring. Accordingly, this paper took Zhulin Town in Central China as a case study area. We propose a method for studying rural-spatial restructuring based on changes in the dominant and recessive morphologies of land use. This process was realized by analyzing the distribution and functional suitability of ecological-production-living (EPL) spaces based on land-use types, data on land-use changes obtained over a 30-year observation period, and in-depth research. We found that examining rural-spatial restructuring by matching the distribution of EPL spaces with their functional suitability can help to avoid the misjudgment of the restructuring mode caused by the consideration of the distribution and structural changes in quantity, facilitating greater understanding of the process of rural-spatial restructuring. Although the distribution and quantitative structure of Zhulin’s EPL spaces have changed to differing degrees, ecological- and agricultural-production spaces still predominate, and their functional suitability has gradually increased. The spatial distribution and functional suitability of Zhulin are generally well matched, with 62.5% of the matched types being high-quality growth, and the positive effect of Zhulin’s spatial restructuring over the past 30 years has been significant. We found that combining changes in EPL spatial area and quantity as well as changes in functional suitability is helpful in better understanding the impact of the national macro-policy shift regarding rural development. Sustaining the positive spatial restructuring of rural space requires the timely adjustment of local actors in accordance with the needs of macroeconomic and social development, and a good rural-governance model is essential.


Land ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 330
Author(s):  
Jean-Christophe Castella ◽  
Sonnasack Phaipasith

Road expansion has played a prominent role in the agrarian transition that marked the integration of swidden-based farming systems into the market economy in Southeast Asia. Rural roads deeply altered the landscape and livelihood structures by allowing the penetration of boom crops such as hybrid maize in remote territories. In this article, we investigate the impact of rural road developments on livelihoods in northern Laos through a longitudinal study conducted over a period of 15 years in a forest frontier. We studied adaptive management strategies of local stakeholders through the combination of individual surveys, focus group discussions, participatory mapping and remote-sensing approaches. The study revealed the short-term benefits of the maize feeder roads on poverty alleviation and rural development, but also the negative long-term effects on agroecosystem health and agricultural productivity related to unsustainable land use. Lessons learnt about the mechanisms of agricultural intensification helped understanding the constraints faced by external interventions promoting sustainable land management practices. When negotiated by local communities for their own interest, roads may provide livelihood-enhancing opportunities through access to external resources, rather than undermining them.


Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 195 ◽  
Author(s):  
Mirko Castellini ◽  
Anna Maria Stellacci ◽  
Danilo Sisto ◽  
Massimo Iovino

The multi-height (low, L = 3 cm; intermediate, M = 100 cm; high, H = 200 cm) Beerkan run methodology was applied on both a minimum tilled (MT) (i.e., up to a depth of 30 cm) and a no-tilled (NT) bare loam soil, and the soil water retention curve was estimated by the BEST-steady algorithm. Three indicators of soil physical quality (SPQ), i.e., macroporosity (Pmac), air capacity (AC) and relative field capacity (RFC) were calculated to assess the impact of water pouring height under alternative soil management practices. Results showed that, compared to the reference low run, M and H runs affected both the estimated soil water retention curves and derived SPQ indicators. Generally, M–H runs significantly reduced the mean values of Pmac and AC and increased RFC for both MT and NT soil management practices. According to the guidelines for assessment of SPQ, the M and H runs: (i) worsened Pmac classification of both MT and NT soils; (ii) did not worsen AC classification, regardless of soil management parameters; (iii) worsened RFC classification of only NT soil, as a consequence of insufficient soil aeration. For both soil management techniques, a strong negative correlation was found between the Pmac and AC values and the gravitational potential energy, Ep, of the water used for the infiltration runs. A positive correlation was detected between RFC and Ep. The relationships were plausible from a soil physics point of view. NT soil has proven to be more resilient than MT. This study contributes toward testing simple and robust methods capable of quantifying soil degradation effects, due to intense rainfall events, under different soil management practices in the Mediterranean environment.


2020 ◽  
Author(s):  
Kindiye Ebabu ◽  
Atsushi Tsunekawa ◽  
Nigussie Haregeweyn ◽  
Enyew Adgo ◽  
Derege Meshesha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document