Finite-Time Stochastic Stability of Random Impulsive Positive System

Author(s):  
Lijie You ◽  
Xiaowu Mu
2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Tianjian Yu ◽  
Yanke Zhong ◽  
Tefang Chen ◽  
Chunyang Chen

This paper is concerned with finite-time stabilization (FTS) analysis for a class of uncertain switched positive linear systems with time-varying delays. First, a new definition of finite-time boundedness (FTB) is introduced for switched positive system. This definition can simplify FTS analysis. Taking interval and polytopic uncertainties into account, a robust state feedback controller is built such that the switched positive linear system is finite-time bounded. Finally, an example is employed to illustrate the validities of obtained results.


2019 ◽  
Vol 41 (12) ◽  
pp. 3550-3561 ◽  
Author(s):  
Mohsen Bahreini ◽  
Jafar Zarei ◽  
Roozbeh Razavi–Far ◽  
Mehrdad Saif

This paper focuses on the problem of reliable finite–time stochastic stability (FTSS) for uncertain networked control systems (NCSs). A Markovian jump system (MJS) model with partly unknown transition probabilities (TPs) for the NCSs with random delays, data packet dropouts (disorders as well) and stochastic actuator faults is established to describe the closed–loop system. A mode-dependent static output feedback controller is designed taking only the measured outputs into account. A new criterion is also derived in terms of linear matrix inequalities (LMIs) to ensure reliable FTSS of the closed–loop system, based on the stochastic stability theory. Simulation studies on a benchmark numerical example, as well as an unstable numerical example can verify the effectiveness of the proposed method.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Zhiguo Yan ◽  
Weihai Zhang

This paper is concerned with the finite-time stability and stabilization problems for linear Itô stochastic singular systems. The condition of existence and uniqueness of solution to such class of systems are first given. Then the concept of finite-time stochastic stability is introduced, and a sufficient condition under which an Itô stochastic singular system is finite-time stochastic stable is derived. Moreover, the finite-time stabilization is investigated, and a sufficient condition for the existence of state feedback controller is presented in terms of matrix inequalities. In the sequel, an algorithm is given for solving the matrix inequalities arising from finite-time stochastic stability (stabilization). Finally, two examples are employed to illustrate our results.


2021 ◽  
Vol 20 ◽  
pp. 244-251
Author(s):  
Xinyue Tang ◽  
Yali Dong ◽  
Meng Liu

This paper deals with the problems of finite-time stochastic stability and stabilization for discrete-time stochastic systems with parametric uncertainties and time-varying delay. Using the Lyapunov-Krasovskii functional method, some sufficient conditions of finite-time stochastic stability for a class of discrete-time stochastic uncertain systems are established in term of matrix inequalities. Then, a new criterion is proposed to ensure the closed-loop system is finite-time stochastically stable. The controller gain is designed. Finally, two numerical examples are given to illustrate the effectiveness of the proposed results.


Sign in / Sign up

Export Citation Format

Share Document