Oxoammonium enabled secondary doping of hole transporting material PEDOT:PSS for high-performance organic solar cells

2020 ◽  
Vol 63 (6) ◽  
pp. 802-809 ◽  
Author(s):  
Haoran Tang ◽  
Zixian Liu ◽  
Zhicheng Hu ◽  
Yuanying Liang ◽  
Fei Huang ◽  
...  
Nanoscale ◽  
2017 ◽  
Vol 9 (36) ◽  
pp. 13506-13514 ◽  
Author(s):  
Yan-Hui Lou ◽  
Zhao-Kui Wang

Poly(3,4-ethylene dioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) is a widely utilized hole-transporting material (HTM) in planar photovoltaic devices, such as organic solar cells (OSCs) and perovskite solar cells (PSCs).


2021 ◽  
Author(s):  
Kun-Mu Lee ◽  
Jui-Yu Yang ◽  
Ping-Sheng Lai ◽  
Ke-Jyun Luo ◽  
Ting Yu Yang ◽  
...  

A new cyclopentadithiophene (CPDT)-based organic small molecule serves as an efficient dopant-free hole transporting material (HTM) for perovskite solar cells (PSCs). Upon incorporation of two carbazole groups, the resulting CPDT-based...


2021 ◽  
Vol 119 (13) ◽  
pp. 133904
Author(s):  
Binbin Wang ◽  
Lingwei Xue ◽  
Shiqi Wang ◽  
Yao Li ◽  
Lele Zang ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2249
Author(s):  
Sanghyun Paek

Recently, perovskite solar cells have been in the spotlight due to several of their advantages. Among the components of PSCs, hole transporting materials (HTMs) re the most important factors for achieving high performance and a stable device. Here, we introduce a new D–π–D type hole transporting material incorporating Tips-anthracene as a π–conjugation part and dimethoxy-triphenylamine as a donor part (which can be easily synthesized using commercially available materials). Through the measurement of various optical properties, the new HTM not only has an appropriate energy level but also has excellent hole transport capability. The device with PEH-16 has a photovoltaic conversion efficiency of 17.1% under standard one sun illumination with negligible hysteresis, which can be compared to a device using Spiro_OMeTAD under the same conditions. Ambient stability for 1200 h shown that 98% of PEH-16 device from the initial PCE was retained, indicating that the devices had good long-term stability.


Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1328 ◽  
Author(s):  
Madeshwaran Sekkarapatti Ramasamy ◽  
Ka Yeon Ryu ◽  
Ju Won Lim ◽  
Asia Bibi ◽  
Hannah Kwon ◽  
...  

An efficient hole-transporting layer (HTL) based on functionalized two-dimensional (2D) MoS2-poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) composites has been developed for use in organic solar cells (OSCs). Few-layer, oleylamine-functionalized MoS2 (FMoS2) nanosheets were prepared via a simple and cost-effective solution-phase exfoliation method; then, they were blended into PEDOT:PSS, a conducting conjugated polymer, and the resulting hybrid film (PEDOT:PSS/FMoS2) was tested as an HTL for poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) OSCs. The devices using this hybrid film HTL showed power conversion efficiencies up to 3.74%, which is 15.08% higher than that of the reference ones having PEDOT:PSS as HTL. Atomic force microscopy and contact angle measurements confirmed the compatibility of the PEDOT:PSS/FMoS2 surface for active layer deposition on it. The electrical impedance spectroscopy analysis revealed that their use minimized the charge-transfer resistance of the OSCs, consequently improving their performance compared with the reference cells. Thus, the proposed fabrication of such HTLs incorporating 2D nanomaterials could be further expanded as a universal protocol for various high-performance optoelectronic devices.


2021 ◽  
Vol 119 (21) ◽  
pp. 211904
Author(s):  
Chenhui Jiang ◽  
Zheng Wang ◽  
Rongfeng Tang ◽  
Changfei Zhu ◽  
Lijian Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document