The behavior of deep convective clouds over the warm pool and connection to the Walker circulation

2018 ◽  
Vol 61 (11) ◽  
pp. 1605-1621 ◽  
Author(s):  
Wenjing Shi ◽  
Ziniu Xiao ◽  
Yufei Ai
2021 ◽  
Vol 78 (1) ◽  
pp. 299-311
Author(s):  
Juho Iipponen ◽  
Leo Donner

AbstractWe present a linear equation for the Walker circulation streamfunction and find its analytic solutions given specified convective heating. In a linear Boussinesq fluid with Rayleigh damping and Newtonian cooling, the streamfunction obeys a Poisson’s equation, forced by gradients in the meridionally averaged diabatic heating and Coriolis force. For an idealized convective heating distribution, analytic solutions for the streamfunction can be found through an analogy with electrostatics. We use these solutions to study the response of the Walker circulation strength (mass transport) to changes in the vertical and zonal scales of convective heating. Robust responses are obtained that depend on how the total convective heating of the atmosphere responds to changing scale. If the total heating remains unchanged, increasing the zonal scale or the vertical scale always leads to a weaker circulation. Conversely, if the total heating grows in proportion to the spatial scale, the circulation becomes stronger with increasing scale. These conclusions are shown to be consistent with a three-dimensional numerical model. Moreover, they are useful in describing the observed seasonal and interannual (ENSO) variability of the Indo-Pacific Walker circulation. On both time scales, the overturning becomes weaker with increasing zonal scale of the convective region, reminiscent of our solutions where we do not vary the total convective heating. Reanalysis data also indicate that the zonal circulation is quite strongly damped, thus yielding a result that the circulation strength is directly proportional to the warm-pool spatial-mean precipitation.


2013 ◽  
Vol 13 (21) ◽  
pp. 10795-10806 ◽  
Author(s):  
H. H. Aumann ◽  
A. Ruzmaikin

Abstract. Deep convective clouds (DCCs) have been widely studied because of their association with heavy precipitation and severe weather events. Changes in the properties of DCCs are likely in a changing climate. Ten years of data collected by Atmospheric Infrared Sounder (AIRS) allow us to identify decadal trends in frequency of occurrence of DCCs over land and ocean. In the past, DCCs have been identified in the thermal infrared by three methods: (1) thresholds based on the absolute value of an atmospheric window channel brightness temperature; (2) thresholds based on the difference between the brightness temperature in an atmospheric window channel and the brightness temperature centered on a strong water vapor absorption line; and (3) a threshold using the difference between the window channel brightness temperature and the tropopause temperature based on climatology. Simultaneous observations of these infrared identified DCCs with the Advanced Microwave Sounding Unit–Humidity Sounder for Brazil (AMSU-HSB) using 183 GHz water channels provide a statistical correlation with microwave deep convection and overshooting convection. In the past 10 years, the frequency of occurrence of DCCs has decreased for the tropical ocean, while it has increased for tropical land. The area of the tropical zone associated with DCCs is typically much less than 1%. We find that the least frequent, more extreme DCCs show the largest trend in frequency of occurrence, increasing over land and decreasing over ocean. The trends for land and ocean closely balance, such that the DCC frequency changed at an insignificant rate for the entire tropical zone. This pattern of essentially zero trend for the tropical zone, but opposite land/ocean trends, is consistent with measurements of global precipitation. The changes in frequency of occurrence of the DCCs are correlated with the Niño34 index, which defines the sea surface temperature (SST) anomaly in the east-central Pacific. This is also consistent with patterns seen in global precipitation. This suggests that the observed changes in the frequency are part of a decadal variability characterized by shifts in the main tropical circulation patterns, which does not fully balance in the 10-year AIRS data record. The regional correlations and anti-correlations of the DCC frequency anomaly with the Multivariate ENSO Index (MEI) provide a new perspective for the regional analysis of past events, since the SST anomaly in the Nino34 region is available in the form of the extended MEI from 1871.


2017 ◽  
Vol 17 (15) ◽  
pp. 9585-9598 ◽  
Author(s):  
Qian Chen ◽  
Ilan Koren ◽  
Orit Altaratz ◽  
Reuven H. Heiblum ◽  
Guy Dagan ◽  
...  

Abstract. Understanding aerosol effects on deep convective clouds and the derived effects on the radiation budget and rain patterns can largely contribute to estimations of climate uncertainties. The challenge is difficult in part because key microphysical processes in the mixed and cold phases are still not well understood. For deep convective clouds with a warm base, understanding aerosol effects on the warm processes is extremely important as they set the initial and boundary conditions for the cold processes. Therefore, the focus of this study is the warm phase, which can be better resolved. The main question is: How do aerosol-derived changes in the warm phase affect the properties of deep convective cloud systems? To explore this question, we used a weather research and forecasting (WRF) model with spectral bin microphysics to simulate a deep convective cloud system over the Marshall Islands during the Kwajalein Experiment (KWAJEX). The model results were validated against observations, showing similarities in the vertical profile of radar reflectivity and the surface rain rate. Simulations with larger aerosol loading resulted in a larger total cloud mass, a larger cloud fraction in the upper levels, and a larger frequency of strong updrafts and rain rates. Enlarged mass both below and above the zero temperature level (ZTL) contributed to the increase in cloud total mass (water and ice) in the polluted runs. Increased condensation efficiency of cloud droplets governed the gain in mass below the ZTL, while both enhanced condensational and depositional growth led to increased mass above it. The enhanced mass loading above the ZTL acted to reduce the cloud buoyancy, while the thermal buoyancy (driven by the enhanced latent heat release) increased in the polluted runs. The overall effect showed an increased upward transport (across the ZTL) of liquid water driven by both larger updrafts and larger droplet mobility. These aerosol effects were reflected in the larger ratio between the masses located above and below the ZTL in the polluted runs. When comparing the net mass flux crossing the ZTL in the clean and polluted runs, the difference was small. However, when comparing the upward and downward fluxes separately, the increase in aerosol concentration was seen to dramatically increase the fluxes in both directions, indicating the aerosol amplification effect of the convection and the affected cloud system properties, such as cloud fraction and rain rate.


2017 ◽  
Author(s):  
Evelyn Jäkel ◽  
Manfred Wendisch ◽  
Trismono C. Krisna ◽  
Florian Ewald ◽  
Tobias Kölling ◽  
...  

Abstract. Vertical profiles of the cloud particle phase state in tropical deep-convective clouds (DCCs) were investigated using airborne solar radiation data collected by the German research aircraft HALO during the ACRIDICON-CHUVA campaign, which was conducted over the Brazilian Amazon in September 2014. A phase discrimination retrieval based on imaging spec-troradiometer measurements of cloud side spectral reflectivity was applied to DCCs under different aerosol conditions. From the retrieval results the height of the mixed phase layer of the DCCs was determined. The retrieved profiles were compared with in situ measurements and satellite observations. It was found that the depth and vertical position of the mixed phase layer can vary up to 900 m for one single cloud scene. In particular, this variation is attributed to the different stages of cloud development in one scene. Clouds of mature or decaying stage are affected by falling ice particles resulting in lower levels of fully glaciated cloud layers compared to growing clouds. Comparing polluted and moderate aerosol conditions revealed a shift of the lower boundary of the mixed phase layer from 5.6 ± 0.2 km (269 K) [moderate] to 6.2 ± 0.3 km (267 K) [polluted], and of the upper boundary from 6.8 ± 0.2 km (263 K) [moderate] to 7.4 ± 0.4 km (259 K) [polluted], as would be expected from theory.


2021 ◽  
Author(s):  
Minkang Du ◽  
Kaiming Huang ◽  
Shaodong Zhang ◽  
Chunming Huang ◽  
Yun Gong ◽  
...  

Abstract. Using radiosonde observations at five stations in the tropical western Pacific and reanalysis data for 15 years from 2005 to 2019, we report an extremely negative anomaly in atmospheric water vapor during the super El Niño winter of 2015/16, and compare the anomaly with that in the other three El Niño winters. Strong specific humidity anomaly is concentrated below 8 km of the troposphere with a peak at 2.5–3.5 km, and column integrated water vapor mass anomaly over the five radiosonde sites has a large negative correlation coefficient of −0.63 with oceanic Niño3.4 index, but with a lag of about 2–3 months. In general, the tropical circulation anomaly in the El Niño winter is characterized by divergence (convergence) in the lower troposphere over the tropical western (eastern) Pacific, thus the water vapor decreases over the tropical western Pacific as upward motion is suppressed. The variability of the Hadley circulation is quite small and has little influence on the observed water vapor anomaly. The anomaly of the Walker circulation makes a considerable contribution to the total anomaly in all the four El Niño winters, especially in the 2006/07 and 2015/16 eastern-Pacific (EP) El Niño events. The monsoon circulation shows a remarkable change from one to the other event, and its anomaly is large in the 2009/10 and 2018/19 central-Pacific (CP) El Niño winters and small in the two EP El Niño winters. The observed water vapor anomaly is caused mainly by the Walker circulation anomaly in the supper EP event of 2015/16 but by the monsoon circulation anomaly in the strong CP event of 2009/10. Owing to the anomalous decrease in upward transport of water vapor during the El Niño winter, less cloud amount and more outgoing longwave radiation over the five stations are clearly presented in satellite observation.


2013 ◽  
Vol 13 (4) ◽  
pp. 10009-10047
Author(s):  
H. H. Aumann ◽  
A. Ruzmaikin

Abstract. Deep Convective Clouds (DCC) have been widely studied because of their association with heavy precipitation and severe weather events. To identify DCC with Atmospheric Infrared Sounder (AIRS) data we use three types of thresholds: (1) thresholds based on the absolute value of an atmospheric window channel brightness temperature; (2) thresholds based on the difference between the brightness temperature in an atmospheric window channel and the brightness temperature centered on a strong water vapor absorption line; and (3) a threshold using the difference between the window channel brightness temperature and the tropopause temperature based on climatology. We find that DCC identified with threshold (2) (referred to as DCCw4) cover 0.16% of the area of the tropical zone and 72% of them are identified as deep convective, 39% are overshooting based on simultaneous observations with the Advanced Microwave Sounding Unit-HSB (AMSU-HSB) 183 GHz water vapor channels. In the past ten years the frequency of occurrence of DCC decreased for the tropical ocean, while it increased for tropical land. The land increase-ocean decrease closely balance, such that the DCC frequency changed at an insignificant rate for the entire tropical zone. This pattern of essentially zero trend for the tropical zone, but opposite land/ocean trends, is consistent with measurements of global precipitation. The changes in frequency of occurrence of the DCC are correlated with the Niño34 index, which defines the SST anomaly in the East-Central Pacific. This is also consistent with patterns seen in global precipitation. This suggests that the observed changes in the frequency are part of a decadal variability characterized by shifts in the main tropical circulation patterns, which does not fully balance in the ten year AIRS data record. The regional correlations and anti-correlations of the DCC frequency anomaly with the Multivariate ENSO Index (MEI) provides a new perspective for the regional analysis of past events, since the SST anomaly in the Nino34 region is available in the form of the extended MEI since 1871. Depending on the selected threshold, the frequency of DCC in the tropical zone ranges from 0.06% to 0.8% of the area. We find that the least frequent, more extreme DCC also show the largest trend in frequency, increasing over land, decreasing over ocean. This finding fits into the framework of how weather extremes respond to climate change.


Sign in / Sign up

Export Citation Format

Share Document