scholarly journals Simple Analytic Solutions for a Convectively Driven Walker Circulation and Their Relevance to Observations

2021 ◽  
Vol 78 (1) ◽  
pp. 299-311
Author(s):  
Juho Iipponen ◽  
Leo Donner

AbstractWe present a linear equation for the Walker circulation streamfunction and find its analytic solutions given specified convective heating. In a linear Boussinesq fluid with Rayleigh damping and Newtonian cooling, the streamfunction obeys a Poisson’s equation, forced by gradients in the meridionally averaged diabatic heating and Coriolis force. For an idealized convective heating distribution, analytic solutions for the streamfunction can be found through an analogy with electrostatics. We use these solutions to study the response of the Walker circulation strength (mass transport) to changes in the vertical and zonal scales of convective heating. Robust responses are obtained that depend on how the total convective heating of the atmosphere responds to changing scale. If the total heating remains unchanged, increasing the zonal scale or the vertical scale always leads to a weaker circulation. Conversely, if the total heating grows in proportion to the spatial scale, the circulation becomes stronger with increasing scale. These conclusions are shown to be consistent with a three-dimensional numerical model. Moreover, they are useful in describing the observed seasonal and interannual (ENSO) variability of the Indo-Pacific Walker circulation. On both time scales, the overturning becomes weaker with increasing zonal scale of the convective region, reminiscent of our solutions where we do not vary the total convective heating. Reanalysis data also indicate that the zonal circulation is quite strongly damped, thus yielding a result that the circulation strength is directly proportional to the warm-pool spatial-mean precipitation.

2011 ◽  
Vol 26 (1) ◽  
pp. 01-08 ◽  
Author(s):  
José Augusto Paixão Veiga ◽  
Vadlamudi Brahamananda Rao ◽  
Sérgio Henrique Franchito

The present study presents an analysis of the annual mean tropical heat balance and its association with the Walker circulation (WC) using NCEP/NCAR Reanalysis data. This study shows the relative importance of diabatic data to produce vertical motion in the tropics and for the WC region. It is shown that ascending motion in the WC's upward branch is determined by the joint effect of latent heating and radiative cooling processes while infrared radiation loss is associated to sink motions on the WC's descending branch. In ascending branches of the WC vertical velocity from reanalysis is overestimated when latent heat is taken into account to drive motions. Radiative cooling is indentified as the main physical process yielding sinking motion in the WC's downward branches. In upward branches of the WC, resulting diabatic processes (latent heat release) are balanced by adiabatic expansion (due rising motions). In descending branches of the WC, there is a near balance between radiative cooling (due to longwave emission) and heating (due to sinking motions).


2012 ◽  
Vol 12 (20) ◽  
pp. 9791-9797 ◽  
Author(s):  
J. S. Hosking ◽  
M. R. Russo ◽  
P. Braesicke ◽  
J. A. Pyle

Abstract. We introduce a methodology to visualise rapid vertical and zonal tropical transport pathways. Using prescribed sea-surface temperatures in four monthly model integrations for 2005, we characterise preferred transport routes from the troposphere to the stratosphere in a high resolution climate model. Most efficient transport is modelled over the Maritime Continent (MC) in November and February, i.e., boreal winter. In these months, the ascending branch of the Walker Circulation over the MC is formed in conjunction with strong deep convection, allowing fast transport into the stratosphere. In the model the upper tropospheric zonal winds associated with the Walker Circulation are also greatest in these months in agreement with ERA-Interim reanalysis data. We conclude that the Walker circulation plays an important role in the seasonality of fast tropical transport from the lower and middle troposphere to the upper troposphere and so impacts at the same time the potential supply of surface emissions to the tropical tropopause layer (TTL) and subsequently to the stratosphere.


2021 ◽  
Author(s):  
Minkang Du ◽  
Kaiming Huang ◽  
Shaodong Zhang ◽  
Chunming Huang ◽  
Yun Gong ◽  
...  

Abstract. Using radiosonde observations at five stations in the tropical western Pacific and reanalysis data for 15 years from 2005 to 2019, we report an extremely negative anomaly in atmospheric water vapor during the super El Niño winter of 2015/16, and compare the anomaly with that in the other three El Niño winters. Strong specific humidity anomaly is concentrated below 8 km of the troposphere with a peak at 2.5–3.5 km, and column integrated water vapor mass anomaly over the five radiosonde sites has a large negative correlation coefficient of −0.63 with oceanic Niño3.4 index, but with a lag of about 2–3 months. In general, the tropical circulation anomaly in the El Niño winter is characterized by divergence (convergence) in the lower troposphere over the tropical western (eastern) Pacific, thus the water vapor decreases over the tropical western Pacific as upward motion is suppressed. The variability of the Hadley circulation is quite small and has little influence on the observed water vapor anomaly. The anomaly of the Walker circulation makes a considerable contribution to the total anomaly in all the four El Niño winters, especially in the 2006/07 and 2015/16 eastern-Pacific (EP) El Niño events. The monsoon circulation shows a remarkable change from one to the other event, and its anomaly is large in the 2009/10 and 2018/19 central-Pacific (CP) El Niño winters and small in the two EP El Niño winters. The observed water vapor anomaly is caused mainly by the Walker circulation anomaly in the supper EP event of 2015/16 but by the monsoon circulation anomaly in the strong CP event of 2009/10. Owing to the anomalous decrease in upward transport of water vapor during the El Niño winter, less cloud amount and more outgoing longwave radiation over the five stations are clearly presented in satellite observation.


Author(s):  
Yuya Hamaguchi ◽  
Yukari N. Takayabu

AbstractIn this study, the statistical relationship between tropical upper-tropospheric troughs (TUTTs) and the initiation of summertime tropical-depression type disturbances (TDDs) over the western and central North Pacific is investigated. By applying a spatiotemporal filter to the 34-year record of brightness temperature and using JRA-55 reanalysis products, TDD-event initiations are detected and classified as trough-related (TR) or non-trough-related (non-TR). The conventional understanding is that TDDs originate primarily in the lower-troposphere; our results refine this view by revealing that approximately 30% of TDDs in the 10°N-20°N latitude ranges are generated under the influence of TUTTs. Lead-lag composite analysis of both TR- and non-TR-TDDs clarifies that TR-TDDs occur under relatively dry and less convergent large-scale conditions in the lower-troposphere. This result suggests that TR-TDDs can form in a relatively unfavorable low-level environment. The three-dimensional structure of the wave activity flux reveals southward and downward propagation of wave energy in the upper troposphere that converges at the mid-troposphere around the region where TR-TDDs occur, suggesting the existence of extratropical forcing. Further, the role of dynamic forcing associated with the TUTT on the TR-TDD-initiation is analyzed using the quasi-geostrophic omega equation. The result reveals that moistening in the mid-to-upper troposphere takes place in association with the sustained dynamical ascent at the southeast side of the TUTT, which precedes the occurrence of deep convective heating. Along with a higher convective available potential energy due to the destabilizing effect of TUTTs, the moistening in the mid-to-upper troposphere also helps to prepare the environment favorable to TDDs initiation.


Sign in / Sign up

Export Citation Format

Share Document