Longitudinal residual circulation in the South Passage of Yangtze Estuary: Combined influences from runoff, tide and bathymetry

Author(s):  
Lifen Zhang ◽  
Zuosheng Yang ◽  
Fan Zhang ◽  
Zhanhai Li ◽  
Yaping Wang ◽  
...  
2012 ◽  
Vol 1 (33) ◽  
pp. 69
Author(s):  
Zheng Bing Wang ◽  
Pingxing Ding

The channels in the Yangtze Estuary have an ordered-branching structure: The estuary is first divided by the Chongming Island into the North Branch and the South Branch. Then the South Branch is divided into the North Channel and South Channel by the Islands Changxing and Hengsha. The South Channel is again divided into the North and South Passage by the Jiuduansha Shoal. This three-level bifurcation and four-outlet configuration appears to be a natural character of the estuary, also in the past (Chen et al., 1982), although the whole system has been extending into the East China Sea in the southeast direction due to the abundant sediment supply from the Yangtze River. Recently, the natural development of the system seems to be substantially disturbed by human interferences, especially the Deep Navigation Channel Project. For the understanding of the behaviour of the bifurcating channel system in the estuary we present analysis on two aspects: (1) the equilibrium configuration of river delta distributary networks, and (2) influence of tidal flow on the morphological equilibrium of rivers. Based on the analyses we conclude that the branching channel structure of the Yangtze Estuary can be classified as tide-influenced river delta distributary networks. Its basic structure is the same as in case of river dominated delta. The empirical relations describing the basic features of the river-dominated distributary delta networks can be explained by theoretical analysis, although they are not fully satisfied by the Yangtze Estuary because of the influence of the tide. Two major influences of the tide are identified, viz. increasing the resistance to the river flow into the sea and increasing the sediment transport capacity. As consequence of these two influences the cross-sectional area of the river/estuary increases in the seawards direction and the bed slope decreases. The insights from the analyses are helpful for the understanding of the impact of the Deep Navigation Channel Project on the large scale morphological development of the estuary.


2020 ◽  
Author(s):  
Ping Dong ◽  
Huabin Shi

<p>The Yangtze estuary is characterized by its extremely high suspended sediment concentration (SSC) and the extensive turbidity maximum zone (TMZ). The estuary is physically forced by an upstream river discharge seasonally varying in a wide range of 6000 – 92000 m3/s and semidiurnal-diurnal mixed tides with the tidal range up to 5 m. The influences of the seasonal and interannual variations in the upstream river discharge and the tidal asymmetry on the location of the Yangtze TMZ are numerically investigated with a two-dimensional depth-averaged model. Sensitivities of SSC and hence the location of TMZ to the bottom shear stress, bed erodibility, and the sediment settling velocity are studied. The spatial and temporal evolutions of the TMZ position in the cases of various upstream river discharges with different monthly, seasonal and interannual variations are simulated and discussed. The effects of the M2/M4-induce tidal asymmetry on the TMZ position and those of the interactions between the eight main astronomical tides (M2, S2, N2, K2, K1, O1, P1, and Q1) are compared. It is shown that the M2/M4-induce tidal asymmetry plays a critical role in the formulation of TMZ in the downstream of the South Branch of Yangtze estuary, while the interactions between the eight main astronomical tides have more significant effects on the TMZ location in other areas of Yangtze estuary such as the South and the North Passages.</p>


2020 ◽  
Author(s):  
Huib E. de Swart ◽  
Inge van Tongeren

<p>Many estuarine systems experience increased salt intrusion, which is harmful for ecology and agriculture and may cause problems for fresh water supply to cities. Some causes of salt intrusion are extraction of fresh water in the upper reaches of the estuary and climate change. Besides, anthropogenic measures, like deepening of channels, are known to have a strong impact on the salt balance.</p><p>This contribution focuses on salt intrusion in estuarine networks, which consist of multiple connected channels. The motivation of the study arose from observations in the Yangtze estuary that reveal frequent overspill of salt between its different channels. To understand the underlying physics of such behaviour, an exploratory, width- and tidally averaged model has been developed and analysed. This model describes the competition between export of salt by river flow and import of salt by density-driven flow and horizontal diffusion. Its key new aspect is that it generalises an earlier model MacCready (2004) from a single channel to estuarine networks. The new model calculates the distribution of salt in, and salt exchange between the channels, as well as the distribution of river water over the different channels.  </p><p>Here, results will be presented for a simplified estuarine network consisting of the South Channel, South Passage and North Passage of the Yangtze Estuary. It will be shown that, for the present-day situation, dry season and spring tide, salt intrusion is larger in the South Passage than in the North Passage. As will be explained, this is mainly due to the different geometry of the two channels. Furthermore, it will be shown that there is slightly more river water transport through the South Passage than through the North Passage, except during high river discharge and neap tide. These results agree with field data and results from numerical studies.</p><p>Other results that will be presented are the sensitivity of salinity intrusion length and distribution of river water over the different channels to changes in, respectively, upstream river discharge, tidal currents and human interventions. Specifically, the effects of the creation of a Deepwater Navigation Channel in the North Passage on salt dynamics will be shown and discussed.</p><p>Reference:<br>MacCready, P. 2004. Toward a unified theory of tidally-averaged estuarine salinity structure. Estuaries 27, 561-570.</p>


Author(s):  
Xiaoyan Zhou ◽  
Ulrich Zanke ◽  
Yixin Yan ◽  
Jinhai Zheng

In this paper a numerical morphodynamic model TIMOR3 has been introduced and applied to simulate the morphological response to the water and sediment changes in the Yangtze River Estuary. TIMOR3, coupled with Hydrodynamic Model and Wave Model, is used to simulate a long-term and huge area of the morphological changes in the Yangtze River Estuary. A detailed investigation was made to the south branch where the Deepwater Channel Navigation Project is under construction. The effect of the project in different phases with different water depth has been simulated and analyzed.


2013 ◽  
Vol 353-356 ◽  
pp. 2763-2768 ◽  
Author(s):  
Jia Ling Hao ◽  
Tong Cao ◽  
Zhu Jun Zhang ◽  
Li Ping Yin

Suspended sediment concentration is important index of water quality, and assessment coefficient of water environment. Remote sensing technology can overcome the shortcomings of conventional methods, such as low speed, long period, and scarce temporal and spatial data distribution. Thus it is meaningful to introduce remote sensing technology to monitoring suspended sediment. In this paper, two TM/ETM+ images of the Yangtze estuary were utilized, and based on review of available domestic and overseas remote sensing data of suspended sediment, also combined with analysis on the 21 samples of synchronizing collection on April 28, 2009 and 3 samples of synchronizing collection on March 26, 2000 at the same time of satellite passing through respectively, the inversion model of satellite quantitative data was setup correlated to suspended sediment concentration. Then the classification diagram of sediment concentration in the surface water at the South Branch of the Yangtze Estuary was drawn. This study gets the following conclusions:(1) TM4 band reflection coefficient is more related to surface sediment concentration, the correlation coefficient is 0.884. (2)Through the regression analysis, the quantitative remote sensing model is established. By the mode, using satellite picture, sediment concentration distribution map in study area is obtained. (3)The diffusion law of suspended sediment, the range of high turbid water region and the estuarine sediment transportation were further discussed from monitoring data, and its characteristic phenomenon were observed and the cause was also explained.


Sign in / Sign up

Export Citation Format

Share Document