scholarly journals What geometrical factors determine the in situ solar wind speed?

2012 ◽  
Vol 57 (12) ◽  
pp. 1409-1414 ◽  
Author(s):  
Bo Li ◽  
Yao Chen ◽  
LiDong Xia
2012 ◽  
Vol 117 (A4) ◽  
pp. n/a-n/a ◽  
Author(s):  
I. Jonathan Rae ◽  
Ian R. Mann ◽  
Kyle R. Murphy ◽  
Louis G. Ozeke ◽  
David K. Milling ◽  
...  

2020 ◽  
Vol 10 ◽  
pp. 8 ◽  
Author(s):  
Mathew J. Owens ◽  
Matthew Lang ◽  
Pete Riley ◽  
Mike Lockwood ◽  
Amos S. Lawless

Advanced space-weather forecasting relies on the ability to accurately predict near-Earth solar wind conditions. For this purpose, physics-based, global numerical models of the solar wind are initialized with photospheric magnetic field and coronagraph observations, but no further observation constraints are imposed between the upper corona and Earth orbit. Data assimilation (DA) of the available in situ solar wind observations into the models could potentially provide additional constraints, improving solar wind reconstructions, and forecasts. However, in order to effectively combine the model and observations, it is necessary to quantify the error introduced by assuming point measurements are representative of the model state. In particular, the range of heliographic latitudes over which in situ solar wind speed measurements are representative is of primary importance, but particularly difficult to assess from observations alone. In this study we use 40+ years of observation-driven solar wind model results to assess two related properties: the latitudinal representivity error introduced by assuming the solar wind speed measured at a given latitude is the same as that at the heliographic equator, and the range of latitudes over which a solar wind measurement should influence the model state, referred to as the observational localisation. These values are quantified for future use in solar wind DA schemes as a function of solar cycle phase, measurement latitude, and error tolerance. In general, we find that in situ solar wind speed measurements near the ecliptic plane at solar minimum are extremely localised, being similar over only 1° or 2° of latitude. In the uniform polar fast wind above approximately 40° latitude at solar minimum, the latitudinal representivity error drops. At solar maximum, the increased variability of the solar wind speed at high latitudes means that the latitudinal representivity error increases at the poles, though becomes greater in the ecliptic, as long as moderate speed errors can be tolerated. The heliospheric magnetic field and solar wind density and temperature show very similar behaviour.


2018 ◽  
Vol 8 ◽  
pp. A18 ◽  
Author(s):  
Manuela Temmer ◽  
Jürgen Hinterreiter ◽  
Martin A. Reiss

We present a concept study of a solar wind forecasting method for Earth, based on persistence modeling from STEREO in situ measurements combined with multi-viewpoint EUV observational data. By comparing the fractional areas of coronal holes (CHs) extracted from EUV data of STEREO and SoHO/SDO, we perform an uncertainty assessment derived from changes in the CHs and apply those changes to the predicted solar wind speed profile at 1 AU. We evaluate the method for the time period 2008–2012, and compare the results to a persistence model based on ACE in situ measurements and to the STEREO persistence model without implementing the information on CH evolution. Compared to an ACE based persistence model, the performance of the STEREO persistence model which takes into account the evolution of CHs, is able to increase the number of correctly predicted high-speed streams by about 12%, and to decrease the number of missed streams by about 23%, and the number of false alarms by about 19%. However, the added information on CH evolution is not able to deliver more accurate speed values for the forecast than using the STEREO persistence model without CH information which performs better than an ACE based persistence model. Investigating the CH evolution between STEREO and Earth view for varying separation angles over ∼25–140° East of Earth, we derive some relation between expanding CHs and increasing solar wind speed, but a less clear relation for decaying CHs and decreasing solar wind speed. This fact most likely prevents the method from making more precise forecasts. The obtained results support a future L5 mission and show the importance and valuable contribution using multi-viewpoint data.


2002 ◽  
Vol 20 (4) ◽  
pp. 405-426 ◽  
Author(s):  
I. R. Mann ◽  
I. Voronkov ◽  
M. Dunlop ◽  
E. Donovan ◽  
T. K. Yeoman ◽  
...  

Abstract. We present magnetospheric observations of very large amplitude global scale ULF waves, from 9 and 10 December 2000 when the upstream solar wind speed exceeded 600 km/s. We characterise these ULF waves using ground-based magnetometer, radar and optical instrumentation on both the dawn and dusk flanks; we find evidence to support the hypothesis that discrete frequency field line resonances (FLRs) were being driven by magnetospheric waveguide modes. During the early part of this interval, Cluster was on an outbound pass from the northern dusk side magnetospheric lobe into the magnetosheath, local-time conjugate to the Canadian sector. In situ magnetic fluctuations, observed by Cluster FGM, show evidence of quasi-periodic motion of the magnetosheath boundary layer with the same period as the ULF waves seen on the ground. Our observations represent the first simultaneous magnetometer, radar and optical observations of the characteristics of FLRs, and confirm the potential importance of ULF waves for magnetosphere-ionosphere coupling, particularly via the generation and modulation of electron precipitation into the ionosphere. The in situ Cluster measurements support the hypothesis that, during intervals of fast solar wind speed, the Kelvin-Helmholtz instability (KHI) can excite magnetospheric waveguide modes which bathe the flank magnetosphere with discrete frequency ULF wave power and drive large amplitude FLRs.  Paper submitted to the special issue devoted to "Cluster: First scientific results", Ann. Geophysicae, 19, 10/11/12, 2001.Key words. Magnetospheric physics (magnetopause, cusp and boundary layers; MHD waves and instabilities; solar wind-magnetosphere interactions)


2021 ◽  
Vol 922 (1) ◽  
pp. 73
Author(s):  
Munetoshi Tokumaru ◽  
Ken’ichi Fujiki ◽  
Masayoshi Kojima ◽  
Kazumasa Iwai

Abstract Computer-assisted tomography (CAT) for interplanetary scintillation (IPS) observations enables the determination of the global distribution of solar wind speed. We compared solar wind speeds derived from the CAT analysis of IPS observations between 1985 and 2019 with in situ observations conducted by the near-Earth and Ulysses spacecraft. From this comparison, we found that solar wind speeds from the IPS observations for 2009–2019 were systematically higher than the in situ observations, whereas those for the period until 2008 were in good agreement with the in situ observations. Further, we found that the discrepancy between IPS and the in situ observations is improved by changing the power index of the empirical relation between the solar wind speed and density fluctuations. The CAT analysis using an optimal value for the power index determined from the comparison between IPS and in situ observations revealed long-term variations in the solar wind speed distribution over three cycles, leading to a better understanding of the time-varying global heliosphere. We found that polar solar winds become highly anisotropic at the Cycle 24/25 minimum, which is a peculiar aspect of this minimum. The IPS observations showed general agreement with the Parker Solar Probe observations around the perihelion of Orbit 1; this supports the reliability of the CAT analysis. The results of this study suggest that the physical properties of solar wind microturbulence may vary with a long-term decline in the solar activity, which provides important implication on the solar wind acceleration.


2021 ◽  
Author(s):  
Manuela Temmer ◽  
Lukas Holzknecht ◽  
Mateja Dumbovic ◽  
Bojan Vrsnak ◽  
Nishtha Sachdeva ◽  
...  

<p>Using combined STEREO-SOHO white-light data, we present a method to determine the volume and density of a coronal mass ejection (CME) by applying the graduated cylindrical shell model (GCS) and deprojected mass derivation. Under the assumption that the CME  mass is roughly equally distributed within a specific volume, we expand the CME self-similarly and calculate the CME density for distances close to the Sun (15–30 Rs) and at 1 AU. The procedure is applied on a sample of 29 well-observed CMEs and compared to their interplanetary counterparts (ICMEs). Specific trends are derived comparing calculated and in-situ measured proton densities at 1 AU, though large uncertainties are revealed due to the unknown mass and geometry evolution: i) a moderate correlation for the magnetic structure having a mass that stays rather constant and ii) a weak correlation for the sheath density by assuming the sheath region is an extra mass - as expected for a mass pile-up process - that is in its amount comparable to the initial CME deprojected mass. High correlations are derived between in-situ measured sheath density and the solar wind density and solar wind speed as measured 24 hours ahead of the arrival of the disturbance. This gives additional confirmation that the sheath-plasma indeed stems from piled-up solar wind material. While the CME interplanetary propagation speed is not related to the sheath density, the size of the CME may play some role in how much material is piled up.</p>


Sign in / Sign up

Export Citation Format

Share Document