Coronal density and the solar wind speed at all latitudes

1981 ◽  
Vol 86 (A11) ◽  
pp. 8869 ◽  
Author(s):  
D. G. Sime ◽  
B. J. Rickett
2009 ◽  
Vol 5 (H15) ◽  
pp. 484-487
Author(s):  
P. K. Manoharan

AbstractIn this paper, I review the results of 3-D evolution of the inner heliosphere over the solar cycle 23, based on observations of interplanetary scintillation (IPS) made at 327 MHz using the Ooty Radio Telescope. The large-scale features of solar wind speed and density turbulence of the current minimum are remarkably different from that of the previous cycle. The results on the solar wind density turbulence show that (1) the current solar minimum is experiencing a low level of coronal density turbulence, to a present value of ~50% lower than the previous similar phase, and (2) the scattering diameter of the corona has decreased steadily after the year 2003. The results on solar wind speed are consistent with the magnetic field strength at the poles and the warping of heliospheric current sheet.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Jacob Oloketuyi ◽  
Yu Liu ◽  
Amobichukwu Chukwudi Amanambu ◽  
Mingyu Zhao

To investigate the periodic behaviour and relationship of sunspot numbers with cosmic ray intensity and solar wind speed, we present analysis from daily data generated from 1995 January to 2018 December. Cross-correlation and wavelet transform tools were employed to carry out the investigation. The analyses confirmed that the cosmic ray intensity correlates negatively with the sunspot numbers, exhibiting an asynchronous phase relationship with a strong negative correlation. The trend in cosmic ray intensity indicates that it undergoes the 11-year modulation that mainly depends on the solar activity in the heliosphere. On the other hand, the solar wind speed neither shows a clear phase relationship nor correlates with the sunspot numbers but shows a wide range of periodicities that could possibly be connected to the pattern of coronal hole configuration. A number of short and midterm variations were also observed from the wavelet analysis, i.e., 64–128 and 128–256 days for the cosmic ray intensity, 4–8, 32–64, 128–256, and 256–512 days for the solar wind speed, and 16–32, 32–64, 128–256, and 256–512 days for the sunspot numbers.


2002 ◽  
Vol 20 (7) ◽  
pp. 957-965 ◽  
Author(s):  
R. H. A. Iles ◽  
A. N. Fazakerley ◽  
A. D. Johnstone ◽  
N. P. Meredith ◽  
P. Bühler

Abstract. The relativistic electron response in the outer radiation belt during magnetic storms has been studied in relation to solar wind and geomagnetic parameters during the first six months of 1995, a period in which there were a number of recurrent fast solar wind streams. The relativistic electron population was measured by instruments on board the two microsatellites, STRV-1a and STRV-1b, which traversed the radiation belt four times per day from L ~ 1 out to L ~ 7 on highly elliptical, near-equatorial orbits. Variations in the E > 750 keV and E > 1 MeV electrons during the main phase and recovery phase of 17 magnetic storms have been compared with the solar wind speed, interplanetary magnetic field z-component, Bz , the solar wind dynamic pressure and Dst *. Three different types of electron responses are identified, with outcomes that strongly depend on the solar wind speed and interplanetary magnetic field orientation during the magnetic storm recovery phase. Observations also confirm that the L-shell, at which the peak enhancement in the electron count rate occurs has a dependence on Dst *.Key words. Magnetospheric physics (energetic particles, trapped; storms and substorms) – Space plasma physics (charged particle motion and accelerations)


1996 ◽  
Vol 23 (13) ◽  
pp. 1649-1652 ◽  
Author(s):  
Karine Issautier ◽  
Nicole Meyer-Vernet ◽  
Michel Moncuquet ◽  
Sang Hoang

Sign in / Sign up

Export Citation Format

Share Document