scholarly journals Production of 316L stainless steel implant materials by powder metallurgy and investigation of their wear properties

2012 ◽  
Vol 57 (15) ◽  
pp. 1873-1878 ◽  
Author(s):  
Naci Kurgan ◽  
Yavuz Sun ◽  
Bunyamin Cicek ◽  
Hayrettin Ahlatci
2021 ◽  
Vol 105 (1) ◽  
pp. 309-318
Author(s):  
Chien Nguyen ◽  
Emil Svoboda ◽  
Jan Sedlacek ◽  
Josef Sedlak ◽  
Ales Polzer ◽  
...  

This study was conducted to investigate the effect of hybrid surface treatment composed of plasma nitriding (PN) and chromium nitride (CrN) coating on the friction-wear properties, the adhesion strength of AISI 316L stainless steel. The CrN coatings with the thickness of 1.0 µm and 2.2 µm were formed on the surfaces of both substrates with plasma nitriding (PN/CrN coating) and without plasma nitriding (CrN coating). The plasma nitriding, CrN coatings, and the hybrid treatment improved markedly the friction-wear properties of the stainless steel. The plasma nitriding generated a hardened layer between the soft substrate and the thin hard coatings and improved markedly friction-wear properties of the CrN-coated stainless steel and the adhesion of the CrN coatings.


Vacuum ◽  
2002 ◽  
Vol 65 (3-4) ◽  
pp. 521-525 ◽  
Author(s):  
I. Özbek ◽  
B.A. Konduk ◽  
C. Bindal ◽  
A.H. Ucisik

2012 ◽  
Vol 503-504 ◽  
pp. 552-555 ◽  
Author(s):  
Xia Yang ◽  
Ying Long Bai ◽  
Meng Xu ◽  
Shi Ju Guo

A new method to produce powder metallurgy (P/M) 316L stainless steel matrix composite by pressureless infiltrating Cu-10Sn alloy was studied. The effect of various compaction pressures and infiltrating temperatures on the microstructure, mechanical properties and corrosion resistance was investigated. The results show that high density P/M 316L stainless steel matrix composite could be achieved by infiltration. A maximum relative density of 98% was achieved, provided that the porosity of the skeleton was controlled at 18%~22%. After infiltration, hardness of the samples increased from 49 HRB to 89 HRB. Moreover, the critical corrosion potential reached -212 mV, close to the level of as cast 316L stainless steel. The hardness of infiltrated composite of the same density decreased with increase in initial skeleton density. It was necessary to prevent the egregious grain growth while the infiltrating temperature was too high.


Sign in / Sign up

Export Citation Format

Share Document