Modeling permanent strains of granular soil under cyclic loading with variable confining pressure

2019 ◽  
Vol 15 (6) ◽  
pp. 1409-1421
Author(s):  
Qi Sun ◽  
Quanyang Dong ◽  
Yuanqiang Cai ◽  
Jun Wang
2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Lei Sun

To gain a better understanding of the undrained deformation characteristic of saturated marine clay soil subjected to vehicle cyclic traffic load, a sophisticated dynamic triaxial was used to conduct a variety of undrained one-way compression cyclic experiments with variable confining pressure (VCP) as well as constant confining pressure (CCP). The results indicate that, compared to CCP test results, VCP is helpful to raise the axial resilient modulus (Mr) and restrain the permanent plastic strain ( ε a p ) development of the specimens. By normalization analysis of the measured data of Mr and ε a p , the virtually unique correlation between normalized average resilient modulus, normalized permanent axial strain after 1,000 loading cycles, and normalized mean normal stress is established, respectively, regardless of the values of CSR. Additionally, the VCP influence on ε a p is quantified and fitted by a power law function, which can be used for subsoil deformation prediction and provides new insights into the mechanics of strain accumulation under undrained cyclic loading conditions.


2018 ◽  
Vol 4 (4) ◽  
pp. 755
Author(s):  
Lei Sun

The effect of variable confining pressure (VCP) on the cyclic deformation and cyclic pore water pressure in K0-consolidated saturated soft marine clay were investigated with the help of the cyclic stress-controlled advanced dynamic triaxial test in undrained condition. The testing program encompassed three cyclic deviator stress ratios, CSR=0.189, 0.284 and 0.379 and three stress path inclinations ηampl=3,1 and 0.64. All tests with constant confining pressure (CCP) and variable confining pressure (VCP) have identical initial stress and average stress. The results were analyzed in terms of the accumulative normalized excess pore water pressure rqu recorded at the end of each stress cycle and permanent axial strain, as well as resilient modulus. Limited data suggest that these behavior are significantly affected by both of the VCP and CSR. For a given value of VCP, both of the pore water pressure rqu and permanent axial strains are consistently increase with the increasing values of CSR. However, for a given value of CSR, the extent of the influence of VCP and the trend is substantially depend on the CSR.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Huiqiang Duan ◽  
Depeng Ma

The damage and failure state of the loaded coal and rock masses is indirectly reflected by its acoustic emission (AE) characteristics. Therefore, it is of great significance to study the AE evolution of loaded coal and rock masses for the evaluation of damage degree and prediction of collapse. The paper mainly represents a numerical simulation investigation of the AE characteristics of coal specimen subjected to cyclic loading under three confining pressures, loading-unloading rates, and valley stresses. From the numerical simulation tests, the following conclusions can be drawn: (1) The final cycle number of coal specimen subjected to cyclic loading is significantly influenced by the confining pressure, followed the valley stress. With the increase in confining pressure or valley stress, the cycle number tends to increase. However, the loading-unloading rate has a little influence on it. (2) The AE counts of coal specimen subjected to cyclic loading are greatly influenced by the confining pressure and the valley stress. With the increase in the confining pressure, the cumulative AE counts at the 1st cycle tend to increase but decrease at a cycle before failure; with the decrease in the valley stress, the cumulative AE counts per cycle increase in the relatively quiet phase. However, the loading-unloading rate has a little influence on it. (3) The failure mode of coal specimen subjected to cyclic loading is significantly influenced by the confining pressure. Under the uniaxial stress state, there is an inclined main fractured plane in the coal specimen, under the confining pressures of 5 and 10 MPa, the coal specimen represents dispersion failure. The loading-unloading rate and valley stress have little influence on it. (4) The AE ratio is proposed, and its evolution can better reflect the different stages of coal specimen failure under cyclic loading. (5) The influence of confining pressure on the broken degree of coal specimen subjected to cyclic loading is analyzed, and the higher the confining pressure, the more broken the failed coal specimen.


Sign in / Sign up

Export Citation Format

Share Document