scholarly journals Effect of Variable Confining Pressure on Cyclic Triaxial Behavior of K0-consolidated Soft Marine Clay

2018 ◽  
Vol 4 (4) ◽  
pp. 755
Author(s):  
Lei Sun

The effect of variable confining pressure (VCP) on the cyclic deformation and cyclic pore water pressure in K0-consolidated saturated soft marine clay were investigated with the help of the cyclic stress-controlled advanced dynamic triaxial test in undrained condition. The testing program encompassed three cyclic deviator stress ratios, CSR=0.189, 0.284 and 0.379 and three stress path inclinations ηampl=3,1 and 0.64. All tests with constant confining pressure (CCP) and variable confining pressure (VCP) have identical initial stress and average stress. The results were analyzed in terms of the accumulative normalized excess pore water pressure rqu recorded at the end of each stress cycle and permanent axial strain, as well as resilient modulus. Limited data suggest that these behavior are significantly affected by both of the VCP and CSR. For a given value of VCP, both of the pore water pressure rqu and permanent axial strains are consistently increase with the increasing values of CSR. However, for a given value of CSR, the extent of the influence of VCP and the trend is substantially depend on the CSR.

2013 ◽  
Vol 275-277 ◽  
pp. 295-298
Author(s):  
Gang Yang ◽  
Qing Yang ◽  
Wen Hua Liu

The cyclic behavior of normally consolidated silty clays was investigated by conducting a series of cyclic simple shear tests on one-dimensionally and isotropically consolidated reconstituted samples. The critical cyclic stress ratio was obtained by the normalized axial strain. Based on hysteretic curve of pore water pressure versus strain, dynamic characteristics of silty clay were investigated. The results showed that with increasing of cyclic loading, soil stress state can be divided into steady state, critical state and failure state based on the critical cyclic stress ratio. The hysteresis curve of pore water pressure versus strain was divided into two parts by cross point A. Compared with two parts, the variation law was obtained. When the upper part area was bigger than the lower part area, pore water pressure and axial strain continuously increase with cycle number; when the upper part area was smaller than the lower part area, pore water pressure and axial strain tended to be steady with cycle number.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Nazile Ural ◽  
Zeki Gunduz

The engineering behavior of nonplastic silts is more difficult to characterize than is the behavior of clay or sand. Especially, behavior of silty soils is important in view of the seismicity of several regions of alluvial deposits in the world, such as the United States, China, and Turkey. In several hazards substantial ground deformation, reduced bearing capacity, and liquefaction of silty soils have been attributed to excess pore pressure generation during dynamic loading. In this paper, an experimental study of the pore water pressure generation of silty soils was conducted by cyclic triaxial tests on samples of reconstituted soils by the slurry deposition method. In all tests silty samples which have different clay percentages were studied under different cyclic stress ratios. The results have showed that in soils having clay content equal to and less than 10%, the excess pore pressure ratio buildup was quicker with an increase in different cyclic stress ratios. When fine and clay content increases, excess pore water pressure decreases constant cyclic stress ratio in nonplastic silty soils. In addition, the applicability of the used criteria for the assessment of liquefaction susceptibility of fine grained soils is examined using laboratory test results.


Author(s):  
Gong-xun Liu ◽  
Mao-tian Luan ◽  
Xiao-wei Tang ◽  
Qing Yang

A series of stress-controlled bi-directional cyclic shear tests under isotropic consolidation conditions were conducted for simulating the cyclic stress induced by wave loading. The area bounded by the elliptical stress path was kept unchanged, while the ratio (R) of the axial cyclic shear stress and the torsional cyclic shear stress was changed in order to research the effect of varied two cyclic stress components on the pore water pressure, strength and deformation behaviors of saturated soft clay. The test results show that with a decrease in R, the residual pore water pressure decreases at first and then increases, and it reaches the lowest at R=1 at the same cycle number, while the amplitude of fluctuated pore water pressure decreases all along. The relationship curves between normalized ratio of pore water pressure and ratio of cycle number have significant differences with different R. The cycle number at failure increases at first and then decreases with decreasing R. It reaches the maximum at R=1, indicating that the dynamic strength is the highest when the stress path is close to a circle. The dynamic stress-strain relationship curves with different R indicate that both the axial and the torsional strains caused by the bi-directional cyclic loadings are mainly the cyclic strains, at the same time, the residual strains appear. With decreasing R, the amplitude of axial cyclic strain decreases and the ratio of axial residual strain and cyclic strain increases firstly and then decreases, while the amplitude of torsional cyclic strain increases. The cyclic shear strain is basically symmetric at R=1, while the residual shear strains appear under other conditions.


2017 ◽  
Vol 54 (2) ◽  
pp. 207-218 ◽  
Author(s):  
Masayuki Hyodo ◽  
Yang Wu ◽  
Noritaka Aramaki ◽  
Yukio Nakata

A series of undrained monotonic and cyclic triaxial tests were performed on silica sand at two initial densities and different confining pressures from 0.1 to 5 MPa to investigate their shear response and crushing behaviour. The influence of particle crushing on the undrained shear strength and pore-water pressure was examined. To clarify the evolution of particle crushing, undrained monotonic and cyclic tests were terminated at several distinctive stages and sieving analysis tests were subsequently performed on the tested specimens. In the undrained monotonic test, specimens exhibited remarkable dilation behaviour and experienced no apparent particle crushing at low confining pressures. An increase in the mean stress suppressed the dilatancy due to a faster increase of the pore-water pressure, giving rise to the occurrence of particle crushing. In the undrained cyclic test, a higher confining pressure and cyclic stress ratio resulted in a much higher relative breakage. At a specific cyclic stress ratio, the relative breakage increased as the cyclic loading progressed. The confining pressure and shear strain amplitude played a significant role in controlling the evolution of particle breakage. The correlation between the relative breakage and plastic work for specimens under isotropic consolidation, undrained monotonic, and cyclic loadings has been validated experimentally.


2011 ◽  
Vol 368-373 ◽  
pp. 2795-2803
Author(s):  
Heng Hu ◽  
Yan Li ◽  
Zhi Liang Dong ◽  
Yan Luo ◽  
Gong Xin Zhang

All the time, security control method of loading is an important research part in the surcharge preloading, which is directly related to safety of the construction process. Starting from the stress path, discussing the variation of excess pore water pressure and relationship between stress path and security, and bringing forward the control method with a safety factor Fs based on the stress path. By measuring the change of excess pore water pressure, the control method with a safety factor Fs can reflect quantitatively the security status of soil and achieve the purpose of the process control, finally the security control method including the safety factor of loading and speed control is put forward to monitor construction safety. The safety factor of loading Fs is verified and back analyzed with the finite-element software, getting the correction factor from 0.90 to 1.20.


2018 ◽  
Vol 55 (12) ◽  
pp. 1756-1768
Author(s):  
Jahanzaib Israr ◽  
Buddhima Indraratna

This paper presents results from a series of piping tests carried out on a selected range of granular filters under static and cyclic loading conditions. The mechanical response of filters subjected to cyclic loading could be characterized in three distinct phases; namely, (I) pre-shakedown, (II) post-shakedown, and (III) post-critical (i.e., the occurrence of internal erosion). All the permanent geomechanical changes such, as erosion, permeability variations, and axial strain developments, took place during phases I and III, while the specimen response remained purely elastic during phase II. The post-critical occurrence of erosion incurred significant settlement that may not be tolerable for high-speed railway substructures. The analysis revealed that a cyclic load would induce excess pore-water pressure, which, in corroboration with steady seepage forces and agitation due to dynamic loading, could then cause internal erosion of fines from the specimens. The resulting excess pore pressure is a direct function of the axial strain due to cyclic densification, as well as the loading frequency and reduction in permeability. A model based on strain energy is proposed to quantify the excess pore-water pressure, and subsequently validated using current and existing test results from published studies.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Qizhi Hu ◽  
Qiang Zou ◽  
Zhigang Ding ◽  
Zhaodong Xu

The excavation unloading of deep foundation pits in soft soil areas often produces negative excess pore water pressure. The rebound deformation of soil on the excavation surface of the foundation pit can be predicted reliably through the accurate expression of relevant variation laws. In combination with the principle of effective stress and the general equation of unidirectional seepage consolidation, an equation for calculating the rebound deformation from the bottom in the process of foundation pit excavation unloading was obtained. Additionally, a triaxial unloading test was adopted to simulate the excavation unloading processes for actual foundation pit engineering. After studying the variation law of the excess pore water pressure generated by excavation unloading, it was found that the negative excess pore water pressure increased with increasing unloading rate, while the corresponding peak value decreased with increasing confining pressure. The equation for rebound calculation was verified through a comparison with relevant measured data from actual engineering. Therefore, it is considered that the equation can reliably describe the rebound deformation law of the base. This paper aims to guide the design and construction of deep foundation pits in soft soil areas.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Wei Huang ◽  
Kejun Wen ◽  
Dongsheng Li ◽  
Xiaojia Deng ◽  
Lin Li ◽  
...  

The unloading creep behavior of soft soil under lateral unloading stress path and excess pore water pressure is the core problem of time-dependent analysis of surrounding rock deformation under excavation of soft soil. The soft soil in Shenzhen, China, was selected in this study. The triaxial unloading creep tests of soft soil under different initial excess pore water pressures (0, 20, 40, and 60 kPa) were conducted with the K0 consolidation and lateral unloading stress paths. The results show that the unloading creep of soft soil was divided into three stages: attenuation creep, constant velocity creep, and accelerated creep. The duration of creep failure is approximately 5 to 30 mins. The unloading creep behavior of soft soil is significantly affected by the deviatoric stress and time. The nonlinearity of unloading creep of soft soil is gradually enhanced with the increase of the deviatoric stress and time. The initial excess pore water pressure has an obvious weakening effect on the unloading creep of soft soil. Under the same deviatoric stress, the unloading creep of soft soil is more significant with the increase of initial excess pore water pressure. Under undrained conditions, the excess pore water pressure generally decreases during the lateral unloading process and drops sharply at the moment of unloading creep damage. The pore water pressure coefficients during the unloading process were 0.73–1.16, 0.26–1.08, and 0.35–0.96, respectively, corresponding to the initial excess pore water pressures of 20, 40, and 60 kPa.


1985 ◽  
Vol 22 (3) ◽  
pp. 357-374 ◽  
Author(s):  
D. J. Folkes ◽  
J. H. A. Crooks

Current methods of predicting the response of soft clays to surface loading are often unsuccessful because the assumed constitutive relationships, including effective stress path behaviour, are incorrect. In particular, the transition from small-strain to large-strain behaviour (i.e. yielding) is frequently not taken into account. Recent laboratory testing has demonstrated that the behaviour of soft clays is largely controlled by yielding. The locus of effective stress states causing yield is known as the yield envelope (YE).The effective stress paths (ESP's) in soft clay foundations below the centre of six fills were determined from computed total stresses and measured pore-water pressures. Yield behaviour is clearly indicated by ESP shapes. The yield envelopes inferred from analyses of field data are similar to those obtained from laboratory testing. Effective stress path shapes vary widely, depending on a variety of factors, including imposed stress level, rate of construction, and boundary drainage conditions. This finding contradicts an earlier conclusion that soft clay behaviour can be characterized by a single ESP. Because of the wide range of possible ESP shapes, the parameters [Formula: see text] does not provide an adequate basis for determining the effective stress state in a soft clay.The ESP/YE analyses indicate that yield can occur either during loading or during excess pore-water pressure dissipation following completion of loading. Yield of sensitive soils during loading is usually followed by strain softening. However, in some soils, dilatant behaviour appears to occur. Yield during dissipation of excess pore-water pressure is characterized by a dramatic change in cv and increased compressibility. Key words: soft clay, yield, effective stress paths, field behaviour, strain softening, rate of consolidation.


2008 ◽  
Vol 22 (31n32) ◽  
pp. 5825-5830 ◽  
Author(s):  
ZHENGHUA XIAO ◽  
BO HAN ◽  
HONGJIAN LIAO ◽  
AKENJIANG TUOHUTI

A series of dynamic triaxial tests are performed on normal anisotropic consolidation and over anisotropic consolidation specimens of loess. Based on the test results, the variable regularity of dynamic shear stress, axial strain and pore water pressure of loess under dynamic loading are measured and analyzed. The influences of the dynamic shear strength and pore water pressure at different over consolidation ratio are analyzed. The relationship between dynamic shear strength and over consolidation ratio of loess is obtained. The evaluating standard of dynamic shear strength of loess is discussed. Meanwhile, how to determine the effective dynamic shear strength index of normal anisotropic consolidated loess is also discussed in this paper. Several obtained conclusions can be referenced for studying the dynamic shear strength of loess foundation.


Sign in / Sign up

Export Citation Format

Share Document