scholarly journals Evolution and driving forces of rural functions in urban agglomeration: A case study of the Chang-Zhu-Tan region

2019 ◽  
Vol 29 (8) ◽  
pp. 1381-1395 ◽  
Author(s):  
Xuelan Tan ◽  
Qiaoling Ouyang ◽  
Yue An ◽  
Shengyuan Mi ◽  
Lingxiao Jiang ◽  
...  
Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 495
Author(s):  
Daizhong Tang ◽  
Mengyuan Mao ◽  
Jiangang Shi ◽  
Wenwen Hua

This paper conducts an analytical study on the urban-rural coordinated development (URCD) in the Yangtze River Delta urban agglomeration (YRDUA), and uses data from 2000–2015 of 27 central cities to study the spatial and temporal evolution patterns of URCD and to discover the influencing factors and driving forces behind it through PCA, ESDA and spatial regression models. It reveals that URCD of the YRDUA shows an obvious club convergence phenomenon during the research duration. The regions with high-level URCD gather mainly in the central part of the urban agglomeration, while the remaining regions mostly have low-level URCD, reflecting the regional aggregation phenomenon of spatial divergence. At the same time, we split URCD into efficiency and equity: urban-rural efficient development (URED) also exhibits similar spatiotemporal evolution patterns, but the patterns of urban-rural balanced development (URBD) show some variability. Finally, by analyzing the driving forces in major years during 2000–2015, it can be concluded that: (i) In recent years, influencing factors such as government financial input and consumption no longer play the main driving role. (ii) Influencing factors such as industrialization degree, fixed asset investment and foreign investment even limit URCD in some years. The above results also show that the government should redesign at the system level to give full play to the contributing factors depending on the actual state of development in different regions and promote the coordinated development of urban and rural areas. The results of this study show that the idea of measuring URCD from two dimensions of efficiency and equity is practical and feasible, and the spatial econometric model can reveal the spatial distribution heterogeneity and time evolution characteristics of regional development, which can provide useful insights for urban-rural integration development of other countries and regions.


2019 ◽  
Vol 11 (21) ◽  
pp. 6041 ◽  
Author(s):  
Zhang ◽  
Li ◽  
Buyantuev ◽  
Bao ◽  
Zhang

Ecosystem services management should often expect to deal with non-linearities due to trade-offs and synergies between ecosystem services (ES). Therefore, it is important to analyze long-term trends in ES development and utilization to understand their responses to climate change and intensification of human activities. In this paper, the region of Uxin in Inner Mongolia, China, was chosen as a case study area to describe the spatial distribution and trends of 5 ES indicators. Changes in relationships between ES and driving forces of dynamics of ES relationships were analyzed for the period 1979–2016 using a stepwise regression. We found that: the magnitude and directions in ES relationships changed during this extended period; those changes are influenced by climate factors, land use change, technological progress, and population growth.


2013 ◽  
Vol 13 (15) ◽  
pp. 7813-7824 ◽  
Author(s):  
R. L. Gattinger ◽  
E. Kyrölä ◽  
C. D. Boone ◽  
W. F. J. Evans ◽  
K. A. Walker ◽  
...  

Abstract. Observations of the mesospheric semi-annual oscillation (MSAO) in the equatorial region have been reported dating back several decades. Seasonal variations in both species densities and airglow emissions are well documented. The extensive observations available offer an excellent case study for comparison with model simulations. A broad range of MSAO measurements is summarised with emphasis on the 80–100 km region. The objective here is not to address directly the complicated driving forces of the MSAO, but rather to employ a combination of observations and model simulations to estimate the limits of some of the underlying dynamical processes. Photochemical model simulations are included for near-equinox and near-solstice conditions, the two times with notable differences in the observed MSAO parameters. Diurnal tides are incorporated in the model to facilitate comparisons of observations made at different local times. The roles of water vapour as the "driver" species and ozone as the "response" species are examined to test for consistency between the model results and observations. The simulations suggest the interactions between vertical eddy diffusion and background vertical advection play a significant role in the MSAO phenomenon. Further, the simulations imply there are rigid limits on vertical advection rates and eddy diffusion rates. For August at the Equator, 90 km altitude, the derived eddy diffusion rate is approximately 1 × 106 cm2 s−1 and the vertical advection is upwards at 0.8 cm s−1. For April the corresponding values are 4 × 105 cm2 s−1 and 0.1 cm s−1. These results from the current 1-D model simulations will need to be verified by a full 3-D simulation. Exactly how vertical advection and eddy diffusion are related to gravity wave momentum as discussed by Dunkerton (1982) three decades ago remains to be addressed.


Sign in / Sign up

Export Citation Format

Share Document