Independently Formed Multiple Fano Resonances for Ultra-High Sensitivity Plasmonic Nanosensor

Plasmonics ◽  
2016 ◽  
Vol 13 (1) ◽  
pp. 107-113 ◽  
Author(s):  
Yilin Wang ◽  
Shilei Li ◽  
Yunyun Zhang ◽  
Li Yu
Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1164
Author(s):  
Gongli Xiao ◽  
Yanping Xu ◽  
Hongyan Yang ◽  
Zetao Ou ◽  
Jianyun Chen ◽  
...  

Herein, we propose a tunable plasmonic sensor with Fano resonators in an inverted U-shaped resonator. By manipulating the sharp asymmetric Fano resonance peaks, a high-sensitivity refractive index sensor can be realized. Using the multimode interference coupled-mode theory and the finite element method, we numerically simulate the influences of geometrical parameters on the plasmonic sensor. Optimizing the structure parameters, we can achieve a high plasmonic sensor with the maximum sensitivity for 840 nm/RIUand figure of merit for 3.9 × 105. The research results provide a reliable theoretical basis for designing high sensitivity to the next generation plasmonic nanosensor.


2021 ◽  
Author(s):  
Yanping Xu ◽  
Zetao Ou ◽  
Jianyun Chen ◽  
Gongli Xiao ◽  
Hongyan Yang

2021 ◽  
Author(s):  
Haseeb Ahmad Khan ◽  
Syed Waqar Shah ◽  
Adnan Daud Khan

Abstract We report numerically electromagnetic-induced transparency (EIT) and Fano resonances in simple plasmonic metasurfaces consist of gold nanobars arranged in Pi, H and four shaped fashion. The bright and dark elements in the metasurfaces are responsible for the emergence of EIT and Fano effects in the transmission spectrum. The concept of symmetry breaking is also introduced by incorporating multiple cavities in the metasurface, which relaxes the dipole coupling selection rules resulting in a mixture of dipole and higher order modes that interact and engenders EIT and Fano modes simultaneously in a nanostructure. Furthermore, the EIT and Fano resonances experience a significant red-shift by increasing the refractive index of the background medium due to which high sensitivity of around 574 nmRIU -1 , figure of merit of 32, and contrast ratio of 41% are realized. Moreover, the effective group index of the proposed metasurface is retrieved and is observed to be very high around the steep asymmetric Fano line shape and within the EIT window, signifying its potential use in slow light applications.


Plasmonics ◽  
2016 ◽  
Vol 12 (4) ◽  
pp. 1099-1105 ◽  
Author(s):  
Yunyun Zhang ◽  
Shilei Li ◽  
Zhao Chen ◽  
Ping Jiang ◽  
Rongzhen Jiao ◽  
...  

2018 ◽  
Vol 189 ◽  
pp. 11009
Author(s):  
Xueying Jin ◽  
Mengyu Wang ◽  
Yongchao Dong ◽  
Liming Chen ◽  
Fei Li ◽  
...  

The control of Fano resonances is of critical importance to opto-electronic and all-optical switching devices, light delay and storage, high sensitivity sensors, and quantum information processors. In this paper, we experimentally and theoretically demonstrate that controllable electromagnetically induced transparency (EIT)-like and Fano resonances can be achieved in a single quasi-cylindrical microresonator (QCMR). Robust and selective excitation of localized axial modes in a high quality QCMR is firstly demonstrated. Based on this stable platform, EIT-like lineshapes can be tuned and converted into Fano resonances by vertically moving the resonator. Moreover, by horizontally scanning the resonator, the transmission spectrum exhibits periodically changed Fano-like lineshapes. It is reported for the first time that the above two kinds of Fano resonances originated from different mechanisms can work on the same mode simultaneously. Our approach, demonstrated in this work, provides a robust photonic platform for accessing, controlling, and engineering the Fano resonances.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3181 ◽  
Author(s):  
Kunhua Wen ◽  
Li Chen ◽  
Jinyun Zhou ◽  
Liang Lei ◽  
Yihong Fang

In this paper, multiple Fano resonances preferred in the refractive index sensing area are achieved based on sub-wavelength metal-insulator-metal (MIM) waveguides. Two slot cavities, which are placed between or above the MIM waveguides, can support the bright modes or the dark modes, respectively. Owing to the mode interferences, dual Fano resonances with obvious asymmetrical spectral responses are achieved. High sensitivity and high figure of merit are investigated by using the finite-difference time-domain (FDTD) method. In view of the development of chip-scale integrated photonics, two extra slot cavities are successively added to the structure, and consequently, three and four ultra-sharp Fano peaks with considerable performances are obtained, respectively. It is believed that this proposed structure can find important applications in the on-chip optical sensing and optical communication areas.


2020 ◽  
Vol 34 (16) ◽  
pp. 2050173
Author(s):  
Yihong Fang ◽  
Kunhua Wen ◽  
Zhengfeng Li ◽  
Bingye Wu ◽  
Zicong Guo

A multi-channel Fano resonant structure is proposed and analyzed based on subwavelength metal–insulator–metal (MIM) waveguides. First, two MIM output ports associated with specific side-coupled cavities are designed to locate at the center and quarter positions of an end-coupled cavity, respectively. Since the interference between the dark and bright modes, dual-channel Fano resonances with asymmetrical lines shapes are obtained at both ports, respectively. High sensitivity and figure of merits are investigated. Besides, phase shifts are also investigated leading to positive and negative group delays available at the Fano peaks and dips, respectively. Likewise, two extra output ports with identical resonant cavities are placed on the other side of the end-coupled cavity. In this case, four-channel Fano resonances with considerable performances are obtained. The proposed structure is analyzed by the coupled mode theory and the finite difference time domain method. It is believed this device can be used as a chip-scale refractive index sensor and optical filter.


Sign in / Sign up

Export Citation Format

Share Document