scholarly journals High Sensitivity Plasmonic Sensor Based on Fano Resonance with Inverted U-Shaped Resonator

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1164
Author(s):  
Gongli Xiao ◽  
Yanping Xu ◽  
Hongyan Yang ◽  
Zetao Ou ◽  
Jianyun Chen ◽  
...  

Herein, we propose a tunable plasmonic sensor with Fano resonators in an inverted U-shaped resonator. By manipulating the sharp asymmetric Fano resonance peaks, a high-sensitivity refractive index sensor can be realized. Using the multimode interference coupled-mode theory and the finite element method, we numerically simulate the influences of geometrical parameters on the plasmonic sensor. Optimizing the structure parameters, we can achieve a high plasmonic sensor with the maximum sensitivity for 840 nm/RIUand figure of merit for 3.9 × 105. The research results provide a reliable theoretical basis for designing high sensitivity to the next generation plasmonic nanosensor.

2021 ◽  
Author(s):  
Md. Biplob Hossain ◽  
Md. Nazmus Sakib ◽  
Md. Sanwar Hossain

Abstract In this microarticle, we design a microstructure photonic crystal fiber (PCF) based external sensing surface plasmon resonance (SPR) sensor. The performance of the design is numerically evaluated incorporating the finite element method (FEM) with Perfectly Matched Layer (PML) boundary condition of scattering case. Modal analysis is performed using finer mesh anlaysis. At the optimized thickness (40nm) of chemically stable gold(Au) layer, the ever been maximum reported wavelength sensitivity (WS) and standard amplitude sensitivity (AS) are to 75,000 nm per RIU and 480 per RIU correspondingly. The sensor also exposed high polynomial fit (𝐑𝟐 = 𝟎. 𝟗𝟗) as well as high figure of merit (FoM) of 280.77 per RIU. Since very much high sensitivity, high detecting range and figure of merit, lowing the cost of fabrication, the proposed design can be a pleasant competitor in detection of the analyte refractive index (RI). At the last, to prove performance ability of our designed sensor all the performance parameter calculated results compare with the existing sensors.


2021 ◽  
Author(s):  
Zicong Guo ◽  
Kunhua Wen ◽  
Yuwen Qin ◽  
Yihong Fang ◽  
Zhengfeng Li ◽  
...  

AbstractIn this paper, a sub-wavelength metal-insulator-metal (MIM) waveguide structure is proposed by using a cross-shape rectangular cavity, of which wings are coupled with two rectangular cavities. Firstly, a cross-shape rectangular cavity is placed between the input and output MIM waveguides. According to the mutual interference between bright and dark modes, three Fano resonant peaks are generated. Secondly, by adding a rectangular cavity on the left wing of the cross shaped one, five asymmetric Fano resonance peaks are obtained. Thirdly, six asymmetric Fano resonance peaks are achieved after adding another cavity on the right wing. Finally, the finite-difference-time-domain (FDTD) method and multimode interference coupled-mode theory (MICMT) are used to simulate and analyze the coupled plasmonic resonant system, respectively. The highest sensitivity of 1 000nm/RIU is achieved.


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1384
Author(s):  
Tingsong Li ◽  
Shubin Yan ◽  
Pengwei Liu ◽  
Xiaoyu Zhang ◽  
Yi Zhang ◽  
...  

In this study, a nano-refractive index sensor is designed that consists of a metal–insulator–metal (MIM) waveguide with a stub-1 and an orthogon ring resonator (ORR) with a stub-2. The finite element method (FEM) was used to analyze the transmission characteristics of the system. We studied the cause and internal mechanism of Fano resonance, and optimized the transmission characteristics by changing various parameters of the structure. In our experimental data, the suitable sensitivity could reach 2260 nm/RIU with a figure of merit of 211.42. Furthermore, we studied the detection of the concentration of trace elements (such as Na+) of the structure in the human body, and its sensitivity reached 0.505 nm/mgdL−1. The structure may have other potential applications in sensors.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2097
Author(s):  
Yuan-Fong Chou Chau ◽  
Chung-Ting Chou Chao ◽  
Siti Zubaidah Binti Haji Jumat ◽  
Muhammad Raziq Rahimi Kooh ◽  
Roshan Thotagamuge ◽  
...  

This work proposed a multiple mode Fano resonance-based refractive index sensor with high sensitivity that is a rarely investigated structure. The designed device consists of a metal–insulator–metal (MIM) waveguide with two rectangular stubs side-coupled with an elliptical resonator embedded with an air path in the resonator and several metal defects set in the bus waveguide. We systematically studied three types of sensor structures employing the finite element method. Results show that the surface plasmon mode’s splitting is affected by the geometry of the sensor. We found that the transmittance dips and peaks can dramatically change by adding the dual air stubs, and the light–matter interaction can effectively enhance by embedding an air path in the resonator and the metal defects in the bus waveguide. The double air stubs and an air path contribute to the cavity plasmon resonance, and the metal defects facilitate the gap plasmon resonance in the proposed plasmonic sensor, resulting in remarkable characteristics compared with those of plasmonic sensors. The high sensitivity of 2600 nm/RIU and 1200 nm/RIU can simultaneously achieve in mode 1 and mode 2 of the proposed type 3 structure, which considerably raises the sensitivity by 216.67% for mode 1 and 133.33% for mode 2 compared to its regular counterpart, i.e., type 2 structure. The designed sensing structure can detect the material’s refractive index in a wide range of gas, liquids, and biomaterials (e.g., hemoglobin concentration).


2020 ◽  
Vol 10 (15) ◽  
pp. 5096
Author(s):  
Hao Su ◽  
Shubin Yan ◽  
Xiaoyu Yang ◽  
Jing Guo ◽  
Jinxi Wang ◽  
...  

In this article, a novel refractive index sensor composed of a metal–insulator–metal (MIM) waveguide with two rectangular stubs coupled with an elliptical ring resonator is proposed, the geometric parameters of which are controlled at a few hundreds of nanometer size. The transmission feature of the structure was studied by the finite element method based on electronic design automation (EDA) software COMSOL Multiphysics 5.4 (Stockholm, Sweden). The rectangular stub resonator can be thought of as a Fabry–Perot (FP) cavity, which can facilitate the Fano resonance. The simulation results reveal that the structure has a symmetric Lorentzian resonance, as well as an ultrasharp and asymmetrical Fano resonance. By adjusting the geometrical parameters, the sensitivity and figure of merit (FOM) of the structure can be optimized flexibly. After adjustments and optimization, the maximum sensitivity can reach up to 1550 nm/RIU (nanometer/Refractive Index Unit) and its FOM is 43.05. This structure presented in this article also has a promising application in highly integrated medical optical sensors to detect the concentration of hemoglobin and monitor body health.


Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 493 ◽  
Author(s):  
Yuan-Fong Chou Chau ◽  
Chung-Ting Chou Chao ◽  
Hung Ji Huang ◽  
Muhammad Raziq Rahimi Kooh ◽  
N. T. R. N. Kumara ◽  
...  

Plasmonic effect using a cross-hair can convey strongly localized surface plasmon modes among the separated composite nanostructures. Compared to its counterpart without the cross-hair, this characteristic has the remarkable merit of enhancing absorptance at resonance and can make the structure carry out a dual-band plasmonic perfect absorber (PPA). In this paper, we propose and design a novel dual-band PPA with a gathering of four metal-shell nanorods using a cross-hair operating at visible and near-infrared regions. Two absorptance peaks at 1050 nm and 750 nm with maximal absorptance of 99.59% and 99.89% for modes 1 and 2, respectively, are detected. High sensitivity of 1200 nm refractive unit (1/RIU), figure of merit of 26.67 and Q factor of 23.33 are acquired, which are very remarkable compared with the other PPAs. In addition, the absorptance in mode 1 is about nine times compared to its counterpart without the cross-hair. The proposed structure gives a novel inspiration for the design of a tunable dual-band PPA, which can be exploited for plasmonic sensor and other nanophotonic devices.


Sign in / Sign up

Export Citation Format

Share Document