Design of Polarization Independent SERS Substrate with Raman Gain Evaluated Using Purcell Factor

Plasmonics ◽  
2021 ◽  
Author(s):  
Richa Goel ◽  
Vimarsh Awasthi ◽  
Padmnabh Rai ◽  
Satish Kumar Dubey
Nanophotonics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 429-434 ◽  
Author(s):  
Stanislav I. Maslovski ◽  
Constantin R. Simovski

AbstractWe prove that, at any point of any reciprocal structure, the local field intensity enhancement, which is averaged over the incident wave polarizations and the incidence directions, exactly coincides with the radiative part of the Purcell factor, which is averaged over the orientations of the emitter. This result is important for gaining a better understanding of the electromagnetic Raman gain in the surface-enhanced Raman scattering and for the further development of this technique.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1699
Author(s):  
Srijit Nair ◽  
Juan Gomez-Cruz ◽  
Gabriel Ascanio ◽  
Aristides Docoslis ◽  
Ribal Georges Sabat ◽  
...  

This article introduces a bioinspired, cicada wing-like surface-enhanced Raman scattering (SERS) substrate based on template-stripped crossed surface relief grating (TS-CSRG). The substrate is polarization-independent, has tunable nanofeatures and can be fabricated in a cleanroom-free environment via holographic exposure followed by template-stripping using a UV-curable resin. The bioinspired nanostructures in the substrate are strategically designed to minimize the reflection of light for wavelengths shorter than their periodicity, promoting enhanced plasmonic regions for the Raman excitation wavelength at 632.8 nm over a large area. The grating pitch that enables an effective SERS signal is studied using Rhodamine 6G, with enhancement factors of the order of 1 × 104. Water contact angle measurements reveal that the TS-CSRGs are equally hydrophobic to cicada wings, providing them with potential self-cleaning and bactericidal properties. Finite-difference time-domain simulations are used to validate the nanofabrication parameters and to further confirm the polarization-independent electromagnetic field enhancement of the nanostructures. As a real-world application, label-free detection of melamine up to 1 ppm, the maximum concentration of the contaminant in food permitted by the World Health Organization, is demonstrated. The new bioinspired functional TS-CSRG SERS substrate holds great potential as a large-area, label-free SERS-active substrate for medical and biochemical sensing applications.


2017 ◽  
Vol 137 (11) ◽  
pp. 415-416 ◽  
Author(s):  
Tomoki Shimizu ◽  
Yoshiaki Kanamori ◽  
Kazuhiro Hane

2020 ◽  
Vol 12 ◽  
Author(s):  
Jyoti Katyal ◽  
Shivani Gautam

Background: A relatively narrow LSPR peak and a strong inter band transition ranging around 800 nm makes Al strongly plasmonic active material. Usually, Al nanoparticles are preferred for UV-plasmonic as the SPR of small size Al nanoparticles locates in deep UV-UV region of the optical spectrum. This paper focused on tuning the LSPR of Al nanostructure towards infrared region by coating Au layer. The proposed structure has Au as outer layer which prevent the further oxidation of Al nanostructure. Methods: The Finite Difference Time Domain (FDTD) and Plasmon Hybridization Theory has been used to evaluated the LSPR and field enhancement of single and dimer Al-Al2O3-Au MDM nanostructure. Results: It is observed that the resonance mode show dependence on the thickness of Al2O3 layer and also on the composition of nanostructure. The Au layered MDM nanostructure shows two peak of equal intensities simultaneously in UV and visible region tuned to NIR region. The extinction spectra and electric field distribution profiles of dimer nanoparticles are compared with monomer to reveal the extent of coupling. The dimer configuration shows higher field enhancement ~107 at 1049 nm. By optimizing the thickness of dielectric layer the MDM nanostructure can be used over UV-visible-NIR region. Conclusion: The LSPR peak shows dependence on the thickness of dielectric layer and also on the composition of nanostructure. It has been observed that optimization of size and thickness of dielectric layer can provide two peaks of equal intensities in UV and Visible region which is advantageous for many applications. The electric field distribution profiles of dimer MDM nanostructure enhanced the field by ~107 in visible and NIR region shows its potential towards SERS substrate. The results of this study will provide valuable information for the optimization of LSPR of Al-Al2O3-Au MDM nanostructure to have high field enhancement.


Sign in / Sign up

Export Citation Format

Share Document