scholarly journals Synergistic effects in cross-linked blends of ion-conducting PEO-/PPO-based unsaturated polyesters

Ionics ◽  
2021 ◽  
Author(s):  
Pia B. Sassmann ◽  
Oliver Weichold

AbstractIon-conductive unsaturated polyesters (UP) were synthesised from poly(ethylene oxide) (Xn = 9, 13, 22, 90) or poly(propylene oxide) (Xn = 7, 13, 20, 34, 68) and maleic anhydride. Subsequently, the polyesters were doped with LiClO4 and cross-linked with styrene using a redox initiator. For PEO-based polyesters, the minimum resistivity is found at an O/Li+ molar ratio of 50/1. In contrast, more lithium is required to reach the minimum when using PPO (O/Li+ = 10/1). Unlike the PEO-based polyesters, cross-linking of the PPO types gives rise to decreasing resistivities at increasing molecular weight. This correlates well with the transverse proton relaxation time determined by single-sided NMR, which is an indicator of the chain mobility. The cross-linking reaction of these UP with styrene exactly follows the predictions based on the copolymerisation parameters and is, therefore, not dependent on the ratio of styrene to UP double bonds as previously reported. Due to the opposing effects of the molecular weight on the ion conductivity of PEO- and PPO-based UP, 1:1 blends of short-chain PPO and long-chain PEO polyesters were cross-linked with styrene. The resulting networks showed a resistivity of 4 kΩ m (σ = 2.5∙10−4 S∙m−1), which is 5 times lower than the pure PEO and 3 times lower than the pure PPO materials.

2000 ◽  
Vol 628 ◽  
Author(s):  
G. González ◽  
P. J. Retuert ◽  
S. Fuentes

ABSTRACTBlending the biopolymer chitosan (CHI) with poly (aminopropilsiloxane) oligomers (pAPS), and poly (ethylene oxide) (PEO) in the presence of lithium perchlorate lead to ion conducting products whose conductivity depends on the composition of the mixture. A ternary phase diagram for mixtures containing 0.2 M LiClO4 shows a zone in which the physical properties of the products - transparent, flexible, mechanically robust films - indicate a high degree of molecular compatibilization of the components. Comparison of these films with binary CHI-pAPS nanocomposites as well as the microscopic aspect, thermal behavior, and X-ray diffraction pattern of the product with the composition PEO/CHI/pAPS/LiClO4 1:0.5:0.6:0.2 molar ratio indicates that these films may be described as a layered nanocomposite. In this composite, lithium species coordinated by PEO and pAPS should be inserted into chitosan layers. Electrochemical impedance spectroscopy measurements indicate the films are pure ionic conductors with a maximal bulk conductivity of 1.7*10-5 Scm-1 at 40 °C and a sample-electrode interface capacitance of about 1.2*10-9 F.


Synlett ◽  
2018 ◽  
Vol 29 (19) ◽  
pp. 2535-2541
Author(s):  
Alex Adronov ◽  
Kelvin Li ◽  
Stuart McNelles

A poly[(phenylene vinylene)-co-dibenzocyclooctyne] polymer prepared by Wittig polymerization chemistry between dibenzocyclooctyne bisaldehyde [DIBO-(CHO)2] and bis(triethyleneglycol)phenylbis(tributylphosphonium) dibromide is reported. The resulting polymer exhibits moderate molecular weight (Mn: 10.5 kDa, Mw: 21.3 kDa, Ð: 2.02) and is fluorescent. It could be readily functionalized by strain-promoted alkyne-azide cycloadditon with different azides, and fluorescence of the polymer was preserved after functionalization. Grafting azide-terminated 5 kDa poly(ethylene glycol) monomethyl ether chains drastically affected the solubility of the polymer. Cross-linking the polymer with poly(ethylene glycol) that was terminated at both ends with azide groups gave access to a fluorescent organogel that could be dried and reswollen with water to form a hydrogel.


2008 ◽  
Vol 1132 ◽  
Author(s):  
F. Bedoui ◽  
L. K. Widjaja ◽  
A. Luk ◽  
D. Bolikal ◽  
N. S. Murthy ◽  
...  

ABSTRACTIncrease in modulus upon hydration in copolymers of desaminotyrosyl-tyrosine ethyl ester (DTE) and poly(ethylene glycol) (PEG) with iodinated tyrosines, poly(I2DTE-co-PEG carbonate)s, was investigated by varying the fraction and the molecular weight of the hydrophilic PEG component. Water, as expected, acts as plasticizer in polymer with PEG content < 15 wt% and > 30 wt%. But, water has the opposite effect in iodinated polymers with moderate PEG contents, between 15 to 20 wt%: it enhances the Young's modulus. The strength and modulus of hydrated poly(I2DTE-co-15%PEG2K carbonate)s increased by as much as fifteen fold upon hydration. While the decrease in the mechanical properties in most polymeric materials with diluents such water is due to the solvent-induced swelling, the increase in strength and modulus that is observed is most likely due to the reinforcing effect of the increased cross-linking efficiency of the hydrated PEG domains in the iodinated polymer.


2006 ◽  
Vol 11-12 ◽  
pp. 469-472 ◽  
Author(s):  
Shu Xian Shi ◽  
Yu Zheng Xia ◽  
Xiao Yan Ma ◽  
Shu Ke Jiao ◽  
Xiao Yu Li

The triblock ABA copolymers of poly (D,L-lactide)-b-poly (ethylene glycol)-b-poly (D,L-lactide) (PDLLA-PEG-PDLLA) were synthesized by bulk ring-opening polymerization in the presence of N2 under normal pressure, using the D,L-lactide (DLLA) as monomer, hydroxyl endgroups of poly(ethylene glycol) (PEG) as initiator and the stannous octoate as the catalyst. The resulting copolymers were characterized by various analytical techniques. Effects of molar ratios of lactide to PEG and the chain length of PEG on the viscosity-average molecular weight of the copolymers, the biodegradation behaviors and hydrophilicity of the copolymers were investigated in detail. The results showed that the viscosity-average molecular weight and the contact angle of the copolymers increased with the molar ratio of lactide to PEG, but water uptake and degradability decreased.


2021 ◽  
Vol 41 (3) ◽  
pp. 202-210
Author(s):  
Jun Wang ◽  
Guangna Qu ◽  
Xiangbin Liu ◽  
Qin Yu ◽  
Na Zhang

Abstract Linear diepoxide-terminated poly(ethylene glycol) (PEG) of molar mass 600, 1000 and 2000 g mol−1 was end-linked with dendrimer-star polymer (PAMAM) of generations 1.0 in water to prepare architecturally well-defined copolymer hydrogels. The structures and properties of the products were characterized using infrared, 1H NMR, DSC measurements, scanning electron microscopy (SEM) and swelling behavior tests. The swelling behavior of these hydrogels was tested in distilled water at constant temperature and the equilibrium swelling ratio (ESR) was determined for structurally different hydrogels and various environmental conditions, which showed that ESR was influenced by the molecular weight of PEG, the molar ratio of H amine groups/epoxy groups, temperature and pH. Higher ESR was obtained for either longer-chain PEG, non-stoichiometric H amine/epoxy groups ratio, acidic pH or lower temperatures. When the hydrogel was switched from 10 °C to 65 °C and pH 3.5 to 11.5, the swelling behavior of the hydrogels showed good reversibility for swelling–deswelling. When the molecular weight of PEG was changed in the range of 600–2000, the lower critical solution temperature (LCST) of hydrogel increased from 30 to 40 °C. When the molar ratio of H amine/epoxy groups was changed, the LCST was not significantly changed.


1966 ◽  
Vol 39 (4) ◽  
pp. 1089-1093
Author(s):  
Julian R. Little ◽  
Robert A. Gregg

Abstract The modulus of polyurethan rubber prepared from poly(ethylene propylene) (70–30) adipate and diphenylmethane diisocyanate by chain extension and cross-linking with water is proportional to the reciprocal molecular weight of the polyester diisocyanate. The modulus at a given molecular weight is lowered by chain extension of the polyester with diisocyanate. The modulus is increased 40 per cent by change of the diisocyanate to 1,5-naphthalene diisocyanate and reduced 60 per cent by change to 2,4-toluene diisocyanate.


Author(s):  
C. E. Cluthe ◽  
G. G. Cocks

Aqueous solutions of a 1 weight-per cent poly (ethylene oxide) (PEO) were degassed under vacuum, transferred to a parallel plate viscometer under a nitrogen gas blanket, and exposed to Co60 gamma radiation. The Co60 source was rated at 4000 curies, and the dose ratewas 3.8x105 rads/hr. The poly (ethylene oxide) employed in the irradiations had an initial viscosity average molecular weight of 2.1 x 106.The solutions were gelled by a free radical reaction with dosages ranging from 5x104 rads to 4.8x106 rads.


1993 ◽  
Vol 70 (03) ◽  
pp. 438-442 ◽  
Author(s):  
B Grøn ◽  
C Filion-Myklebust ◽  
S Bjørnsen ◽  
P Haidaris ◽  
F Brosstad

SummaryFibrinogen and fibrin related chains in reduced human plasma as well as the bonds interlinking partially cross-linked fibrin from plasma clots have been studied by means of 1D- and 2D electrophoresis and Western blotting. Immunovisualization of reduced plasma or partially cross-linked fibrin with monoclonal antibodies specific for the α-chains or the γ-chains have shown that several bands represent material belonging to both chains. In order to decide whether these bands constitute αγ-chain hybrids or superimposed α- and γ-chain dimers, the cross-linked material was separated according to both isoelectric point (pI) and molecular weight (MW) using Pharmacia’s Multiphor II system. Western blotting of the second dimension gels revealed that partially cross-linked fibrin contains αsγt-chain hybrids and γ- polymers, in addition to the well-known γ-dimers and α-polymers. The main αsγt-chain hybrid has a pI between that of the α- and the γ-chains, a MW of about 200 kDa and contains Aα-chains with intact fibrinopeptide A (FPA). It was also observed that soluble fibrinogen/fibrin complexes as well as partially cross-linked fibrin contain degraded α-dimers with MWs close to the γ-dimers. These findings demonstrate that factor XIII-catalyzed cross-linking of fibrin is a more complex phenomenon than earlier recognized.


Sign in / Sign up

Export Citation Format

Share Document