Hybrid nanofluid velocity slip flow over a permeability of a porous medium

Author(s):  
Ziyad A. Alhussain
Author(s):  
Gombi Rachappa Manohar ◽  
Puttaswamy Venkatesh ◽  
Bijjanal Jayanna Gireesha ◽  
Gosikere Kenchappa Ramesh

In the current investigation a mathematical model is simplified to explore the numerical treatment for the thermal and flow behavior in a magneto hydrodynamics Casson fluid through a micro channel by taking [Formula: see text] nanoparticles. The combined effects of temperature jump, porous medium and velocity slip are incorporated. Using the dimensionless variables one can obtain the governing differential equations thereafter resolved numerically using RKF45 method. The velocity, temperature, skin friction and Nusselt number coefficient are addressed for different pertaining parameter. The upshots of the current investigation are visualized through graphically elucidation. Out comes shows that larger values of solid volume fraction decreases both velocity and temperature field. Furthermore drag coefficient is increases for increase in magnetic parameter, also hybrid nanofluid gives more impact than nanofluid.


Author(s):  
Kalidas Das ◽  
Nilangshu Acharya ◽  
Md Tausif SK ◽  
Pinaki Ranjan Duari ◽  
Tanmoy Chakraborty

A theoretical model on MHD hybrid nanofluid flow in accordance with non-uniform heat flux and solar energy radiation has been studied in our work. Also, the impact of multiple slip conditions is presumed at the boundary. Comparative flow analyses for hybrid nanofluid (Al2O3/Cu–H2O) and single nanoparticle-based nanofluid (Cu–H2O) are addressed here with graphs and charts. The leading partial differential equations with boundary conditions have been converted into ordinary differential equations with the aid of similarity transformation. The final system is tackled via the fifth-order Runge–Kutta–Felberg method with shooting procedure and the computation is done using Maple 17. One of the interesting results shows that with the growth of thermal radiation, the Nusselt number for Cu–H2O is reduced by 26.16%, whereas for the same, Nusselt number for Al2O3/Cu–H2O is lessened by 27.38%. Fallout shows that with the growing values of velocity slip parameter, the thermal boundary layer thickness enlarges faster for Al2O3/Cu–H2O in comparison to Cu–H2O.


2020 ◽  
Vol 9 (1) ◽  
pp. 223-232 ◽  
Author(s):  
B.J. Gireesha ◽  
S. Sindhu

AbstractThis study has been conducted to focus on natural convection flow of Casson fluid through an annular microchannel formed by two cylinders in the presence of magnetic field. The process of heat generation/absorption is taken into consideration. Combined effects of various parameters such as porous medium, velocity slip and temperature jump are considered. Solution of the present mathematical model is obtained numerically using fourth-fifth order Runge-Kutta-Fehlberg method. The flow velocity, thermal field, skin friction and Nusselt number are scrutinized with respect to the involved parameters of interest such as fluid wall interaction parameter, rarefaction parameter, Casson parameter and Darcy number with the aid of graphs. It is established that higher values of Casson parameter increases the skin friction coefficient. Further it is obtained that rate of heat transfer diminishes as fluid wall interaction parameter increases.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Liaquat Ali Lund ◽  
Zurni Omar ◽  
Ilyas Khan

Purpose The purpose of this study is to find the multiple branches of the three-dimensional flow of Cu-Al2 O3/water rotating hybrid nanofluid perfusing a porous medium over the stretching/shrinking surface. The extended model of Darcy due to Forchheimer and Brinkman has been considered to make the hybrid nanofluid model over the pores by considering the porosity and permeability effects. Design/methodology/approach The Tiwari and Das model with the thermophysical properties of spherical particles for efficient dynamic viscosity of the nanoparticle is used. The linear similarity transformations are applied to convert the partial differential equations into ordinary differential equations (ODEs). The system of governing ODEs is solved by using the three-stage Lobatto IIIa scheme in MATLAB for evolving parameters. Findings The system of governing ODEs produces dual branches. A unique stable branch is identified with help of stability analysis. The reduced heat transfer rate has been shown to increase with the reduced ϕ2 in both branches. Further, results revealed that the presence of multiple branches depends on the ranges of porosity, suction and stretching/shrinking parameters for the particular value of the rotating parameter. Originality/value Dual branches of the three-dimensional flow of Cu-Al2 O3/water rotating hybrid nanofluid have been found. Therefore, stability analysis of the branches is also conducted to know which branch is appropriate for the practical applications. To the best of the authors’ knowledge, this research is novel and there is no previously published work relevant to the present study.


Sign in / Sign up

Export Citation Format

Share Document