Active Ingredients and Mechanism of Action of Rhizoma Coptidis against Type 2 Diabetes Based on Network-Pharmacology and Bioinformatics

2020 ◽  
Vol 40 (2) ◽  
pp. 257-264 ◽  
Author(s):  
Yuan Sun ◽  
Yi-yi Xiong ◽  
He-zhen Wu ◽  
Wei-chen Xiong ◽  
Bo Liu ◽  
...  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Guozhen Yuan ◽  
Shuai Shi ◽  
Qiulei Jia ◽  
Jingjing Shi ◽  
Shuqing Shi ◽  
...  

Rapid increases in metabolic disorders, such as type 2 diabetes mellitus (T2DM) and hyperlipidemia, are becoming a substantial challenge to worldwide public health. Traditional Chinese medicine has a long history and abundant experience in the treatment of diabetes and hyperlipidemia, and Puerariae lobatae Radix (known as Gegen in Chinese) is one of the most prevalent Chinese herbs applied to treat these diseases. The underlying mechanism by which Gegen simultaneously treats diabetes and hyperlipidemia, however, has not been clearly elucidated to date. Therefore, we systematically explored the potential mechanism of Gegen in the treatment of T2DM complicated with hyperlipidemia based on network pharmacology. We screened the potential targets of Gegen, T2DM, and hyperlipidemia in several online databases. Then, the hub targets were analyzed by performing protein-protein interaction, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment assays, and finally, the complicated connections among compounds, targets, and pathways were visualized in Cytoscape. We found that isoflavones, including daidzein, genistein, and puerarin, as well as β-sitosterol, are the key active ingredients of Gegen responsible for its antidiabetic and antihyperlipidemia effects, which mainly target AKR1B1, EGFR, ESR, TNF, NOS3, MAPK3, PPAR, CYP19A1, INS, IL6, and SORD and multiple pathways, such as the PI3K-Akt signaling pathway; the AGE-RAGE signaling pathway in diabetic complications, fluid shear stress, and atherosclerosis; the PPAR signaling pathway; insulin resistance; the HIF-1 signaling pathway; the TNF signaling pathway; and others. These active ingredients also target multiple biological processes, including the regulation of glucose and lipid metabolism, the maintenance of metabolic homeostasis, and anti-inflammatory and antioxidant pathways. In conclusion, Gegen is a promising therapeutic phytomedicine for T2DM with hyperlipidemia that targets multiple proteins, biological processes, and pathways.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wenrong An ◽  
Yanqin Huang ◽  
Shouqiang Chen ◽  
Tao Teng ◽  
Yingning Shi ◽  
...  

AbstractThis study systematically explored the underlying mechanism of Rhizoma Coptidis against type 2 diabetes mellitus (T2DM) by using network pharmacology and molecular docking and experimental validation. We retrieved and screened active compounds of Rhizoma Coptidis and corresponding T2DM-related targets across multiple databases. PPI networks of the genes were constructed using STRING, and the core targets were screened via topological analysis. GO and KEGG enrichment analyses were performed by using DAVID. Finally, molecular docking and experimental studies were performed after bioinformatic analysis for verification. There were 14 active compounds and 19 core targets of Rhizoma Coptidis-T2DM, of which quercetin was identified as the main compound and IL6, VEGFA and TNF were the most significant core targets. GO and KEGG enrichment analyses showed that Rhizoma Coptidis ameliorated T2DM by regulating multiple biological processes and pathways. Docking studies indicated that IL6, VEGFA and TNF could stably bind with all active compounds of Rhizoma Coptidis. The results of our experiments revealed that Rhizoma Coptidis could inhibit the expression of IL6 and TNFα and enhance islet cell viability. This study suggests anti-inflammatory therapeutic effects of Rhizoma Coptidis on T2DM, thereby providing a scientific basis and new insight for further research on the antidiabetic effect of Rhizoma Coptidis.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1245
Author(s):  
Shu Zhang ◽  
Qi Ge ◽  
Liang Chen ◽  
Keping Chen

Diabetes mellitus (DM), as a chronic disease caused by insulin deficiency or using obstacles, is gradually becoming a principal worldwide health problem. Pueraria lobata is one of the traditional Chinese medicinal and edible plants, playing roles in improving the cardiovascular system, lowering blood sugar, anti-inflammation, anti-oxidation, and so on. Studies on the hypoglycemic effects of Pueraria lobata were also frequently reported. To determine the active ingredients and related targets of Pueraria lobata for DM, 256 metabolites were identified by LC/MS non targeted metabonomics, and 19 active ingredients interacting with 51 DM-related targets were screened. The results showed that puerarin, quercetin, genistein, daidzein, and other active ingredients in Pueraria lobata could participate in the AGE-RAGE signaling pathway, insulin resistance, HIF-1 signaling pathway, FoxO signaling pathway, and MAPK signaling pathway by acting on VEGFA, INS, INSR, IL-6, TNF and AKT1, and may regulate type 2 diabetes, inflammation, atherosis and diabetes complications, such as diabetic retinopathy, diabetic nephropathy, and diabetic cardiomyopathy.


Sign in / Sign up

Export Citation Format

Share Document