TEC derived from local GPS network in Pakistan and comparison with IRI-2016 and IRI-PLAS 2017

2021 ◽  
Author(s):  
Maria Mehmood ◽  
Renato Filjar ◽  
Sajid Saleem ◽  
Munawar Shah ◽  
Arslan Ahmed
Keyword(s):  
2002 ◽  
Vol 45 (4) ◽  
pp. 469-475 ◽  
Author(s):  
Dong-He ZHANG ◽  
K. Igarashi ◽  
Zuo XIAO ◽  
Guan-Yi MA

2015 ◽  
Vol 57 ◽  
Author(s):  
Massimo Aranzulla ◽  
Flavio Cannavò ◽  
Simona Scollo

<p>The detection of volcanic plumes produced during explosive eruptions is important to improve our understanding on dispersal processes and reduce risks to aviation operations. The ability of Global Position-ing System (GPS) to retrieve volcanic plumes is one of the new challenges of the last years in volcanic plume detection. In this work, we analyze the Signal to Noise Ratio (SNR) data from 21 permanent stations of the GPS network of the Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, that are located on the Mt. Etna (Italy) flanks. Being one of the most explosive events since 2011, the eruption of November 23, 2013 was chosen as a test-case. Results show some variations in the SNR data that can be correlated with the presence of an ash-laden plume in the atmosphere. Benefits and limitations of the method are highlighted.</p>


2021 ◽  
Vol 64 (1) ◽  
Author(s):  
Maria Mehmood ◽  
Sajid Saleem ◽  
Renato Filjar ◽  
Najam Naqvi ◽  
Arslan Ahmed

Many organizations allow GNSS users to access Global Ionosphere Maps (GIMS). However, the TEC estimates derived from GIMs are of insufficient quality to describe small-scale TEC variations over Pakistan. In this paper, the first local TEC map over Pakistan for the year 2019, derived from a regional GPS network, is presented. Spherical harmonics expansion is employed to estimate TEC with the spatial resolution of latitude 0.2° x longitude 0.2° and temporal resolution of 5 minutes. The impact of changing the degree/order of harmonics is assessed and it is determined that harmonic expansion up to 6 degrees is sufficient for estimating accurate TEC map for the region of interest. We have demonstrated that the TEC maps of Pakistan generated by local model conform better to the GIM by Center of Orbit Determination (CODE) (RMS = 5.83) as compared to International Reference Ionosphere (IRI-2016) (RMS = 7.18). We found that the TEC estimated by the local model shows a better correlation to measured TEC; CODE-GIM overestimated TEC, while IRI-2016 underestimates it. Moreover, it was observed that TEC peaks during noon (1100-0100 LT) and Equinox (April). The residuals of local TEC estimates with respect to TEC obtained from CODE- GIM indicate the inaccuracy of CODE-GIM over the region of Pakistan: highest deviation of TEC from local model with respect to CODE –GIM was observed in April (RMS = 8.73) and minimum in October (RMS = 2.78). We have also analyzed the performance of our maps in geomagnetically disturbed days. The research presented in this paper will contribute towards the ionosphere study over Pakistan, where limited research is available currently.


2011 ◽  
Vol 116 (A9) ◽  
pp. n/a-n/a ◽  
Author(s):  
Feng Ding ◽  
Weixing Wan ◽  
Guirong Xu ◽  
Tao Yu ◽  
Guanglin Yang ◽  
...  

2005 ◽  
Vol 49 (1) ◽  
pp. 63-84 ◽  
Author(s):  
M.C. deLacy ◽  
F. Sans� ◽  
A.J. Gil ◽  
G. Rodr�guez-Caderot

Sign in / Sign up

Export Citation Format

Share Document