Differences in nucleotide effects on intracellular pH, Na+/H+ antiport activity, and ATP-binding proteins in endothelial cells

1997 ◽  
Vol 33 (8) ◽  
pp. 608-614 ◽  
Author(s):  
Michael Cutaia ◽  
Doloretta D. Dawicki ◽  
Lisa M. Papazian ◽  
Nancy Parks ◽  
Ellen Clarke ◽  
...  
1999 ◽  
Vol 82 (09) ◽  
pp. 1177-1181 ◽  
Author(s):  
Hubert de Leeuw ◽  
Pauline Wijers-Koster ◽  
Jan van Mourik ◽  
Jan Voorberg

SummaryIn endothelial cells von Willebrand factor (vWF) and P-selectin are stored in dense granules, so-called Weibel-Palade bodies. Upon stimulation of endothelial cells with a variety of agents including thrombin, these organelles fuse with the plasma membrane and release their content. Small GTP-binding proteins have been shown to control release from intracellular storage pools in a number of cells. In this study we have investigated whether small GTP-binding proteins are associated with Weibel-Palade bodies. We isolated Weibel-Palade bodies by centrifugation on two consecutive density gradients of Percoll. The dense fraction in which these subcellular organelles were highly enriched, was analysed by SDS-PAGE followed by GTP overlay. A distinct band with an apparent molecular weight of 28,000 was observed. Two-dimensional gel electrophoresis followed by GTP overlay revealed the presence of a single small GTP-binding protein with an isoelectric point of 7.1. A monoclonal antibody directed against RalA showed reactivity with the small GTP-binding protein present in subcellular fractions that contain Weibel-Palade bodies. The small GTPase RalA was previously identified on dense granules of platelets and on synaptic vesicles in nerve terminals. Our observations suggest that RalA serves a role in regulated exocytosis of Weibel-Palade bodies in endothelial cells.


1995 ◽  
Vol 128 (4) ◽  
pp. 687-698 ◽  
Author(s):  
K L Bennett ◽  
D G Jackson ◽  
J C Simon ◽  
E Tanczos ◽  
R Peach ◽  
...  

Glycosaminoglycan-modified isoforms of CD44 have been implicated in growth factor presentation at sites of inflammation. In the present study we show that COS cell transfectants expressing CD44 isoforms containing the alternatively spliced exon V3 are modified with heparan sulfate (HS). Binding studies with three HS-binding growth factors, basic-fibroblast growth factor (b-FGF), heparin binding-epidermal growth factor (HB-EGF), and amphiregulin, showed that the HS-modified CD44 isoforms are able to bind to b-FGF and HB-EGF, but not AR. b-FGF and HB-EGF binding to HS-modified CD44 was eliminated by pretreating the protein with heparitinase or by blocking with free heparin. HS-modified CD44 immunoprecipitated from keratinocytes, which express a CD44 isoform containing V3, also bound to b-FGF. We examined whether HS-modified CD44 isoforms were expressed by activated endothelial cells where they might present HS-binding growth factors to leukocytes during an inflammatory response. PCR and antibody-binding studies showed that activated cultured endothelial cells only express the CD44H isoform which does not contain any of the variably spliced exons including V3. Immunohistological studies with antibodies directed to CD44 extracellular domains encoded by the variably spliced exons showed that vascular endothelial cells in inflamed skin tissue sections do not express CD44 spliced variants. Keratinocytes, monocytes, and dendritic cells in the same specimens were found to express variably spliced CD44. 35SO4(-2)-labeling experiments demonstrated that activated cultured endothelial cells do not express detectable levels of chondroitin sulfate or HS-modified CD44. Our results suggest that one of the functions of CD44 isoforms expressing V3 is to bind and present a subset of HS-binding proteins. Furthermore, it is probable that HS-modified CD44 is involved in the presentation of HS-binding proteins by keratinocytes in inflamed skin. However, our data suggests that CD44 is not likely to be the proteoglycan principally involved in presenting HS-binding growth factors to leukocytes on the vascular cell wall.


2013 ◽  
Vol 85 (15) ◽  
pp. 7478-7486 ◽  
Author(s):  
Yongsheng Xiao ◽  
Lei Guo ◽  
Yinsheng Wang
Keyword(s):  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qiong Xie ◽  
Jianqiang Peng ◽  
Ying Guo ◽  
Feng Li

Abstract Background A high level of total cholesterol is associated with several lipid metabolism disorders, including atherosclerosis and cardiovascular diseases. ATP-binding cassette (ABC) transporter A1 (ABCA1) and miR-33-5p play crucial roles in atherosclerosis by controlling cholesterol efflux. While citrate is a precursor metabolite for lipid and cholesterol synthesis, little is known about the association between citrate synthase (CS) and cholesterol efflux. This study investigated the role of the miR-33-5p/ABCA1/CS axis in regulating cholesterol efflux in vascular endothelial cells (VECs). Materials and methods VECs were treated with oxidized low-density lipoprotein cholesterol (ox-LDL), or pretreated with plasmids overexpressing CS, ABCA1, siRNAs against CS and ABCA1, and an miR-33-5p inhibitor. Cell apoptosis, cellular senescence-associated β-galactosidase activity, inflammation, and cholesterol efflux were detected. Results Treatment with ox-LDL decreased ABCA1 and CS levels and increased miR-33-5p expression and apoptosis in dose-dependent manners. In contrast, treatment with the miR-33-5p inhibitor and ABCA1 and CS overexpression plasmids inhibited the above-mentioned ox-LDL-induced changes. In addition, treatment with ox-LDL decreased cholesterol efflux, induced aging, and promoted the production of inflammatory cytokines (i.e., IL-6 and tumor necrosis factor TNF-α), as well as the expression of Bax and Caspase 3 proteins in VECs. All these changes were rescued by miR-33-5p inhibition and ABCA1 and CS overexpression. The inhibition of ABCA1 and CS by siRNAs eliminated the effects mediated by the miR-33-5p inhibitor, and knockdown of CS eliminated the effects of ABCA1 on VECs. Conclusions This study demonstrated the crucial roles played by the miR-33-5p/ABCA1/CS axis in regulating cholesterol efflux, inflammation, apoptosis, and aging in VECs, and also suggested the axis as a target for managing lipid metabolism disorders.


1999 ◽  
Vol 46 (2) ◽  
pp. 419-429 ◽  
Author(s):  
M Danieluk ◽  
R Buś ◽  
S Pikuła ◽  
J Bandorowicz-Pikuła

Annexin VI (AnxVI) from porcine liver, a member of the annexin family of Ca(2+)- and membrane-binding proteins, has been shown to bind ATP in vitro with a K(d) in the low micromolar concentration range. However, this protein does not contain within its primary structure any ATP-binding consensus motifs found in other nucleotide-binding proteins. In addition, binding of ATP to AnxVI resulted in modulation of AnxVI function, which was accompanied by changes in AnxVI affinity to Ca2+ in the presence of ATP. Using limited proteolytic digestion, purification of protein fragments by affinity chromatography on ATP-agarose, and direct sequencing, the ATP-binding site of AnxVI was located in a C-terminal half of the AnxVI molecule. To further study AnxVI-nucleotide interaction we have employed a functional nucleotide analog, Cibacron blue 3GA (CB3GA), a triazine dye which is commonly used to purify multiple ATP-binding proteins and has been described to modulate their activities. We have observed that AnxVI binds to CB3GA immobilized on agarose in a Ca(2+)-dependent manner. Binding is reversed by EGTA and by ATP and, to a lower extent, by other adenine nucleotides. CB3GA binds to AnxVI also in solution, evoking reversible aggregation of protein molecules, which resembles self-association of AnxVI molecules either in solution or on a membrane surface. Our observations support earlier findings that AnxVI is an ATP-binding protein.


1992 ◽  
Vol 6 (11) ◽  
pp. 1805-1814 ◽  
Author(s):  
D R Moser ◽  
W L Lowe ◽  
B L Dake ◽  
B A Booth ◽  
M Boes ◽  
...  

2020 ◽  
Vol 31 (13) ◽  
pp. 1324-1345
Author(s):  
Sydney Skuodas ◽  
Amy Clemons ◽  
Michael Hayes ◽  
Ashley Goll ◽  
Betul Zora ◽  
...  

Skuodas and Clemons et al. show that protein aggregation is pervasive during early development and that the ABCF family of soluble ATP-binding proteins, which are encoded by animal genomes and expressed embryonically, regulate disaggregation and are instrumental for a normal developmental program.


Sign in / Sign up

Export Citation Format

Share Document