Evaluation of SWAT Model performance on glaciated and non-glaciated subbasins of Nam Co Lake, Southern Tibetan Plateau, China

2019 ◽  
Vol 16 (5) ◽  
pp. 1075-1097 ◽  
Author(s):  
Muhammad Adnan ◽  
Shi-change Kang ◽  
Guo-shuai Zhang ◽  
Muhammad Naveed Anjum ◽  
Muhammad Zaman ◽  
...  
2020 ◽  
Vol 231 ◽  
pp. 106175
Author(s):  
Jie Zhou ◽  
Weijian Zhou ◽  
Guocheng Dong ◽  
Yaoyao Hou ◽  
Feng Xian ◽  
...  

2014 ◽  
Vol 55 (66) ◽  
pp. 239-247 ◽  
Author(s):  
Hongbo Wu ◽  
Ninglian Wang ◽  
Xi Jiang ◽  
Zhongming Guo

AbstractWater level fluctuations of inland lakes are related to regional-scale climate changes, and reflect variations in evaporation, precipitation and glacier meltwater flowing into the lake area in its catchment. In this paper, Ice, Cloud and land Elevation Satellite (ICESat) altimeter data and Landsat imagery (2002-09) are used to estimate Nam Co lake (Nyainqentanglha range, Tibetan Plateau) water elevation changes during 2002-09. In 2003 Nam Co lake covered an area of ~1998.8 ± 4.2 km2 and was situated at 4723 m a.s.l. Over such inland water bodies, ICESat altimeter data offer both wide coverage and spatial and temporal accuracy. We combine remote-sensing and GIS technology to map and reconstruct lake area and increased volume changes during a 7 year time series. Nam Co lake water level increased by 2.4±0.12m (0.33ma–1) between 23 February 2003 and 1 October 2009, and lake volume increased by 4.9 ±0.5 km3. In the past 7 years, Nam Co lake area has increased from 1998.78 ±5.4 to 2023.8 ±3.4 km2, the glacier-covered area has decreased from 832.34 to 821.0 km2 and the drainage basin area has decreased from 201.1 ±4.2 to 196.1 ±2.3 km2. However, the most spectacular feature is the continual water level rise from 2003 to 2009 without an obvious associated increase in precipitation. Based on digital elevation models (DEMs) from Shuttle Radar Topography Mission (SRTM) DEM data and corrected ICESat elevation data, significant changes to glacier mass balance in the western Nyainqentanglha mountains are indicated. Nyainqentanglha mountain glacier surface elevations decreased by 8.39 ± 0.45 m during 2003-09. Over the same period, at least 1.01 km3 of glacial meltwater flowed into Nam Co lake, assuming a glacial runoff coefficient of 0.6. The mean glacier mass-balance value is -490mmw.e. over the corresponding period, indicating that glacier meltwater in the catchment contributes to lake level rise. The contribution rate of glacial meltwater to lake water volume rise is 20.75%. The temporal lake level fluctuation correlates with temperature variations over the same time span.


2018 ◽  
Vol 123 (13) ◽  
pp. 6746-6759 ◽  
Author(s):  
Yufeng Dai ◽  
Lei Wang ◽  
Tandong Yao ◽  
Xiangyu Li ◽  
Lingjing Zhu ◽  
...  

2016 ◽  
Vol 537 ◽  
pp. 27-35 ◽  
Author(s):  
Ning Ma ◽  
Jozsef Szilagyi ◽  
Guo-Yue Niu ◽  
Yinsheng Zhang ◽  
Teng Zhang ◽  
...  

2014 ◽  
Vol 15 (3) ◽  
pp. 1312-1322 ◽  
Author(s):  
Yanhong Wu ◽  
Hongxing Zheng ◽  
Bing Zhang ◽  
Dongmei Chen ◽  
Liping Lei

Abstract Long-term changes in the water budget of lakes in the Tibetan Plateau due to climate change are of great interest not only for the importance of water management, but also for the critical challenge due to the lack of observations. In this paper, the water budget of Nam Co Lake during 1980–2010 is simulated using a dynamical monthly water balance model. The simulated lake level is in good agreement with field investigations and the remotely sensed lake level. The long-term hydrological simulation shows that from 1980 to 2010, lake level rose from 4718.34 to 4724.93 m, accompanied by an increase of lake water storage volume from 77.33 × 109 to 83.66 × 109 m3. For the net lake level rise (5.93 m) during the period 1980–2010, the proportional contributions of rainfall–runoff, glacier melt, precipitation on the lake, lake percolation, and evaporation are 104.7%, 56.6%, 41.7%, −22.2%, and −80.9%, respectively. A positive but diminishing annual water surplus is found in Nam Co Lake, implying a continuous but slowing rise in lake level as a hydrological consequence of climate change.


2017 ◽  
Vol 14 (12) ◽  
pp. 2458-2470 ◽  
Author(s):  
Tan-guang Gao ◽  
Shi-chang Kang ◽  
Ting-jun Zhang ◽  
Da-qing Yang ◽  
Jian-guo Shang ◽  
...  

2012 ◽  
Vol 16 (4) ◽  
pp. 1095-1110 ◽  
Author(s):  
T. Gerken ◽  
W. Babel ◽  
A. Hoffmann ◽  
T. Biermann ◽  
M. Herzog ◽  
...  

Abstract. This paper introduces a surface model with two soil-layers for use in a high-resolution circulation model that has been modified with an extrapolated surface temperature, to be used for the calculation of turbulent fluxes. A quadratic temperature profile based on the layer mean and base temperature is assumed in each layer and extended to the surface. The model is tested at two sites on the Tibetan Plateau near Nam Co Lake during four days during the 2009 Monsoon season. In comparison to a two-layer model without explicit surface temperature estimate, there is a greatly reduced delay in diurnal flux cycles and the modelled surface temperature is much closer to observations. Comparison with a SVAT model and eddy covariance measurements shows an overall reasonable model performance based on RMSD and cross correlation comparisons between the modified and original model. A potential limitation of the model is the need for careful initialisation of the initial soil temperature profile, that requires field measurements. We show that the modified model is capable of reproducing fluxes of similar magnitudes and dynamics when compared to more complex methods chosen as a reference.


Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 624 ◽  
Author(s):  
Feiteng Wang ◽  
Xin Zhang ◽  
Xiaoying Yue ◽  
Mengyuan Song ◽  
Guoshuai Zhang ◽  
...  

We measured black carbon (BC) with a seven-wavelength aethalometer (AE-31) at the Nam Co Lake (NCL), the hinterland of the Tibetan Plateau (TP) from May 2015 to April 2016. The daily average concentration of BC was 145 ± 85 ng m−3, increasing by 50% since 2006. The seasonal variation of BC shows higher concentrations in spring and summer and lower concentrations in autumn and winter, dominated by the adjacent sources and meteorological conditions. The diurnal variation of BC showed that its concentrations peaked at 9:00–16:00 (UTC + 8), significantly related to local human activities (e.g., animal-manure burning and nearby traffic due to the tourism industry). The concentration-weighted trajectory (CWT) analysis showed that the long-distance transport of BC from South Asia could also be a potential contributor to BC at the NCL, as well as the biomass burning by the surrounding residents. The analyses of the absorption coefficient and absorption Ångström exponent show the consistency of sourcing the BC at the NCL. We suggest here that urgent measures should be taken to protect the atmospheric environment at the NCL, considering the fast-increasing concentrations of BC as an indicator of fuel combustion.


2008 ◽  
Vol 14 (4) ◽  
pp. 321-336 ◽  
Author(s):  
Qianggong Zhang ◽  
Shichang Kang ◽  
Feiyue Wang ◽  
Chaoliu Li ◽  
Yanwei Xu

Sign in / Sign up

Export Citation Format

Share Document