Experimental and Numerical Analysis of Cavity/Mean-Flow Interaction in Low Pressure Axial Flow Turbines

Author(s):  
Dario Barsi ◽  
Carlo Costa ◽  
Davide Lengani ◽  
Daniele Simoni ◽  
Giulio Venturino ◽  
...  
2016 ◽  
Vol 72 (5) ◽  
pp. 727-745 ◽  
Author(s):  
Wu Geng ◽  
Qiang Xie ◽  
Gengxin Chen ◽  
Tingting Zu ◽  
Dongxiao Wang

2011 ◽  
Vol 99-100 ◽  
pp. 1059-1062
Author(s):  
Ji Duo Jin ◽  
Ning Li ◽  
Zhao Hong Qin

The nonlinear dynamics are studied for a supported cylinder subjected to axial flow. A nonlinear model is presented for dynamics of the cylinder supported at both ends. The nonlinear terms considered here are the quadratic viscous force and the structural nonlinear force induced by the lateral motions of the cylinder. Using two-mode discretized equation, numerical simulations are carried out for the dynamical behavior of the cylinder to explain the flutter instability found in the experiment. The results of numerical analysis show that at certain value of flow velocity the system loses stability by divergence, and the new equilibrium (the buckled configuration) becomes unstable at higher flow leading to post-divergence flutter. The effect of the friction drag coefficients on the behavior of the system is investigated.


2021 ◽  
Author(s):  
Eva Alvarez-Regueiro ◽  
Esperanza Barrera-Medrano ◽  
Ricardo Martinez-Botas ◽  
Srithar Rajoo

Abstract This paper presents a CFD-based numerical analysis on the potential benefits of non-radial blading turbine for low speed-low pressure applications. Electric turbocompounding is a waste heat recovery technology consisting of a turbine coupled to a generator that transforms the energy left over in the engine exhaust gases, which is typically found at low pressure, into electricity. Turbines designed to operate at low specific speed are ideal for these applications since the peak efficiency occurs at lower pressure ratios than conventional high speed turbines. The baseline design consisted of a vaneless radial fibre turbine, operating at 1.2 pressure ratio and 28,000rpm. Experimental low temperature tests were carried out with the baseline radial blading turbine at nominal, lower and higher pressure ratio operating conditions to validate numerical simulations. The baseline turbine incidence angle effect was studied and positive inlet blade angle impact was assessed in the current paper. Four different turbine rotor designs of 20, 30, 40 and 50° of positive inlet blade angle are presented, with the aim to reduce the losses associated to positive incidence, specially at midspan. The volute domain was included in all CFD calculations to take into account the volute-rotor interactions. The results obtained from numerical simulations of the modified designs were compared with those from the baseline turbine rotor at design and off-design conditions. Total-to-static efficiency improved in all the non-radial blading designs at all operating points considered, by maximum of 1.5% at design conditions and 5% at off-design conditions, particularly at low pressure ratio. As non-radial fibre blading may be susceptible to high centrifugal and thermal stresses, a structural analysis was performed to assess the feasibility of each design. Most of non-radial blading designs showed acceptable levels of stress and deformation.


Author(s):  
Sang-Won Kim ◽  
Youn-Jea Kim

An axial-flow pump has a relatively high discharge flow rate and specific speed at a relatively low head and it consists of an inlet guide vane, impeller, and outlet guide vane. The interaction of the flow through the inlet guide vane, impeller, and outlet guide vane of the axial-flow pump has a significant effect on its performance. Of those components, the guide vanes especially can improve the head and efficiency of the pump by transforming the kinetic energy of the rotating flow, which has a tangential velocity component, into pressure energy. Accordingly, the geometric configurations of the guide vanes such as blade thickness and angle are crucial design factors for determining the performance of the axial-flow pump. As the reliability of Computational Fluid Dynamics (CFD) has been elevated together with the advance in computer technology, numerical analysis using CFD has recently become an alternative to empirical experiment due to its high reliability to measure the flow field. Thus, in this study, 1,200mm axial-flow pump having an inlet guide vane and impeller with 4 blades and an outlet guide vane with 6 blades was numerically investigated. Numerical study was conducted using the commercial CFD code, ANSYS CFX ver. 16.1, in order to elucidate the effect of the thickness and angle of the guide vanes on the performance of 1,200mm axial-flow pump. The stage condition, which averages the fluxes between interfaces and is accordingly appropriate for the evaluation of pump performance, was adopted as the interface condition between the guide vanes and the impeller. The rotational periodicity condition was used in order to enable a simplified geometry to be used since the guide vanes feature multiple identical regions. The shear stress transport (SST) k-ω model, predicting the turbulence within the flow in good agreement, was also employed in the CFD calculation. With regard to the numerical simulation results, the characteristics of the pressure distribution were discussed in detail. The pump performance, which will determine how well an axial-flow pump will work in terms of its efficiency and head, was also discussed in detail, leading to the conclusion on the optimal blade thickness and angle for the improvement of the performance. In addition, the total pressure loss coefficient was considered in order to investigate the loss within the flow paths depending on the thickness and angle variations. The results presented in this study may give guidelines to the numerical analysis of the axial-flow pump and the investigation of the performance for further optimal design of the axial-flow pump.


2019 ◽  
Vol 875 ◽  
pp. 1145-1174 ◽  
Author(s):  
T. Congy ◽  
G. A. El ◽  
M. A. Hoefer

A new type of wave–mean flow interaction is identified and studied in which a small-amplitude, linear, dispersive modulated wave propagates through an evolving, nonlinear, large-scale fluid state such as an expansion (rarefaction) wave or a dispersive shock wave (undular bore). The Korteweg–de Vries (KdV) equation is considered as a prototypical example of dynamic wavepacket–mean flow interaction. Modulation equations are derived for the coupling between linear wave modulations and a nonlinear mean flow. These equations admit a particular class of solutions that describe the transmission or trapping of a linear wavepacket by an unsteady hydrodynamic state. Two adiabatic invariants of motion are identified that determine the transmission, trapping conditions and show that wavepackets incident upon smooth expansion waves or compressive, rapidly oscillating dispersive shock waves exhibit so-called hydrodynamic reciprocity recently described in Maiden et al. (Phys. Rev. Lett., vol. 120, 2018, 144101) in the context of hydrodynamic soliton tunnelling. The modulation theory results are in excellent agreement with direct numerical simulations of full KdV dynamics. The integrability of the KdV equation is not invoked so these results can be extended to other nonlinear dispersive fluid mechanic models.


Author(s):  
Bryn N. Ubald ◽  
Jiahuan Cui ◽  
Rob Watson ◽  
Paul G. Tucker ◽  
Shahrokh Shahpar

The measurement accuracy of the temperature/pressure probe mounted at the leading edge of a turbine/compressor blade is crucial for estimating the fuel consumption of a turbo-fan engine. Apart from the measurement error itself, the probe also introduces extra losses. This again would compromise the measurement accuracy of the overall engine efficiency. This paper utilizes high-fidelity numerical analysis to understand the complex flow around the probe and quantify the loss sources due to the interaction between the blade and its instrumentation. With the inclusion of leading edge probes, three dimensional flow phenomena develop, with some flow features acting in a similar manner to a jet in cross flow. The separated flow formed at the leading edge of the probe blocks a large area of the probe bleed-hole, which is one of the reasons why the probe accuracy can be sensitive to Mach and Reynolds numbers. The addition of 4% free stream turbulence is shown to have a marginal impact on the jet trajectory originated from the probe bleedhole. However, a slight reduction is observed in the size of the separation bubble formed at the leading edge of the probe, preceding the two bleedhole exits. The free stream turbulence also has a significant impact on the size of the separation bubble near the trailing edge of the blade. With the addition of the free stream turbulence, the loss observed within the trailing edge wake is reduced. More than 50% of the losses at the cascade exit are generated by the leading edge probe. A breakdown of the dissipation terms from the mean flow kinetic energy equation demonstrates that the Reynolds stresses are the key terms in dissipating the counter rotating vortex pairs with the viscous stresses responsible for the boundary layer.


Sign in / Sign up

Export Citation Format

Share Document