scholarly journals Impact of a Multi-step Heat Treatment on Different Manufacturing Routes of 18CrNiMo7-6 Steel

2020 ◽  
Vol 51 (6) ◽  
pp. 3009-3029 ◽  
Author(s):  
Paranjayee Mandal ◽  
Maider Olasolo ◽  
Laurie Da Silva ◽  
Himanshu Lalvani
2020 ◽  
Vol 26 (3) ◽  
pp. 445-450
Author(s):  
Makoto Shimoyamada ◽  
Hironori Shikano ◽  
Shingo Mogami ◽  
Makoto Kanauchi ◽  
Hayato Masuda ◽  
...  

2013 ◽  
Vol 747-748 ◽  
pp. 497-501
Author(s):  
Na Liu ◽  
Zhou Li ◽  
Guo Qing Zhang ◽  
Hua Yuan ◽  
Wen Yong Xu ◽  
...  

Powder metallurgical TiAl alloy was fabricated by gas atomization powders, and the effect of heat treatment temperature on the microstructure evolution and room tensile properties of PM TiAl alloy was investigated. The uniform fine duplex microstructure was formed in PM TiAl based alloy after being heat treated at 1250/2h followed by furnace cooling (FC)+ 900/6h (FC). When the first step heat treatment temperature was improved to 1360/1h, the near lamellar microstructure was achieved. The ductility of the alloy after heat treatment improved markedly to 1.2% and 0.6%, but the tensile strength decreased to 570MPa and 600MPa compared to 655MPa of as-HIP TiAl alloy. Post heat treatment at the higher temperature in the alpha plus gamma field would regenerate thermally induced porosity (TIP).


2018 ◽  
Vol 29 (4) ◽  
pp. 849-854 ◽  
Author(s):  
Kuan-Ting Lai ◽  
Cheng-Hung Shih ◽  
Chun-Te Wu ◽  
Min-Yu Yang ◽  
Chi-Shiung Hsi

Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 629
Author(s):  
Anagh Deshpande ◽  
Subrata Deb Nath ◽  
Sundar Atre ◽  
Keng Hsu

Selective laser melting (SLM) is one of the most widely used additive manufacturing technologies. Fabricating nickel-based superalloys with SLM has garnered significant interest from the industry and the research community alike due to the excellent high temperature properties and thermal stability exhibited by the alloys. Haynes-282 alloy, a γ′-phase strengthened Ni-based superalloy, has shown good high temperature mechanical properties comparable to alloys like R-41, Waspaloy, and 263 alloy but with better fabricability. A study and comparison of the effect of different heat-treatment routes on microstructure and mechanical property evolution of Haynes-282 fabricated with SLM is lacking in the literature. Hence, in this manuscript, a thorough investigation of microstructure and mechanical properties after a three-step heat treatment and hot isostatic pressing (HIP) has been conducted. In-situ heat-treatment experiments were conducted in a transmission electron microscopy (TEM) to study γ′ precipitate evolution. γ′ precipitation was found to start at 950 °C during in-situ heat-treatment. Insights from the in-situ heat-treatment were used to decide the aging heat-treatment for the alloy. The three-step heat-treatment was found to increase yield strength (YS) and ultimate tensile strength (UTS). HIP process enabled γ′ precipitation and recrystallization of grains of the as-printed samples in one single step.


2021 ◽  
Vol 799 ◽  
pp. 140367
Author(s):  
Cheng-Lin Li ◽  
Jae-Keun Hong ◽  
P.L. Narayana ◽  
Seong-Woo Choi ◽  
Sang Won Lee ◽  
...  

Author(s):  
Chengtong Ye ◽  
Hang Li ◽  
Lina Jia ◽  
Zuheng Jin ◽  
Guangxin Sun ◽  
...  

2010 ◽  
Vol 638-642 ◽  
pp. 3549-3554 ◽  
Author(s):  
Toshihiro Tsuchiyama ◽  
T. Onomoto ◽  
K. Tsuboi ◽  
Setsuo Takaki

The Fe-25Cr-1N alloy produced by solution nitriding possesses extremely high yield strength owing to the solid solution strengthening by nitrogen. However, it was found that the steel exhibited an insufficient elongation because of the brittle intergranular fracture caused during the uniform tensile deformation. This is due to the marked stress concentration at grain boundaries, which is derived from the grain coarsening caused during long time solution nitriding and the development of planar dislocation structure characteristic of high nitrogen austenitic steels. The most effective way to reduce the stress concentration at grain boundary during deformation should be grain refinement. In this study, grain refinement was attempted by the two-step heat treatment for the Fe-25Cr-1N(-Mn) alloy, and then the mechanical properties were investigated by means of tensile tests and fatigue tests. The two-step heat treatment resulted in the grain refinement of austenite to 20 microns in diameter. The intergranular fracture was greatly suppressed from 70% (as-solution-nitrided) to 10% (grain-refined) in area fraction by the grain refinement. In addition, elongation was markedly increased with local necking. The yield stress and tensile strength were also increased, and thus, the fatigue limit is also raised by more than 30%.


2006 ◽  
Vol 519-521 ◽  
pp. 991-996 ◽  
Author(s):  
G. Fribourg ◽  
Alexis Deschamps ◽  
Yves Bréchet

This paper presents a detailed study of the microstructure and mechanical properties of AA7449 alloy during the two step heat treatment leading to the industrial T7651 temper. It is first shown that reproducing the heat treatment without a deformation step as used in the T7651 industrial temper leads to 2-fold decrease of the precipitation kinetics due to the absence of dislocations, while the resulting mechanical properties (if this change in kinetics is accounted for) are very similar. The work hardening rate is shown to strongly evolve during the heat treatment, and this evolution has been correlated to the evolution of microstructure using a Kocks-Mecking-Estrin analysis. Finally, an analysis in terms of activation volume of the strain rate sensitivity allows for the determination of the dislocation / precipitate interaction in the overaged temper.


Sign in / Sign up

Export Citation Format

Share Document