Influence of Growth Rate on Eutectic Spacing, Microhardness, and Ultimate Tensile Strength in the Directionally Solidified Al-Cu-Ni Eutectic Alloy

2018 ◽  
Vol 49 (6) ◽  
pp. 3293-3305 ◽  
Author(s):  
Ümit Bayram ◽  
Necmettin Maraşlı
2022 ◽  
Vol 327 ◽  
pp. 82-97
Author(s):  
He Qin ◽  
Guang Yu Yang ◽  
Shi Feng Luo ◽  
Tong Bai ◽  
Wan Qi Jie

Microstructures and mechanical properties of directionally solidified Mg-xGd (5.21, 7.96 and 9.58 wt.%) alloys were investigated at a wide range of growth rates (V = 10-200 μm/s) under the constant temperature gradient (G = 30 K/mm). The results showed that when the growth rate was 10 μm/s, different interface morphologies were observed in three tested alloys: cellular morphology for Mg-5.21Gd alloy, a mixed morphology of cellular structure and dendritic structure for Mg-7.96Gd alloy and dendrite morphology for Mg-9.58Gd alloy, respectively. Upon further increasing the growth rate, only dendrite morphology was exhibited in all experimental alloys. The microstructural parameters (λ1, λ2) decreased with increasing the growth rate for all the experimental alloy, and the measured λ1 and λ2 values were in good agreement with Trivedi model and Kattamis-Flemings model, respectively. Vickers hardness and the ultimate tensile strength increased with the increase of the growth rate and Gd content, while the elongation decreased gradually. Furthermore, the relationships between the hardness, ultimate tensile strength, the growth rate and the microstructural parameters were discussed and compared with the previous experimental results.


JOM ◽  
2015 ◽  
Vol 68 (1) ◽  
pp. 178-184 ◽  
Author(s):  
Jianfei Zhang ◽  
Xuewei Ma ◽  
Huiping Ren ◽  
Lin Chen ◽  
Zili Jin ◽  
...  

2009 ◽  
Vol 16 (02) ◽  
pp. 191-201 ◽  
Author(s):  
E. ÇADIRLI ◽  
H. KAYA ◽  
M. GÜNDÜZ

Sn – Cd eutectic melt was first obtained in a hot filling furnace and then directionally solidified upward with different growth rate ranges (8.1–165 μm/s) at a constant temperature gradient G (4.35 K/mm) in the Bridgman-type directional solidification furnace. The lamellar spacings (λ) were measured from both transverse and longitudinal sections of the samples. The influence of the growth rate (V) on lamellar spacings (λ) and undercoolings (Δ T) was analyzed. λ2V, ΔTλ and ΔTV-0.5 values were determined by using λ,ΔT and V values. Microindentation hardness (HV) was measured from both transverse and longitudinal sections of the specimens. HV values increase with the increasing values of V but decrease with increasing λ values. λ-V, λ - ΔT and λ2V results have been compared with the Jackson–Hunt eutectic model and similar experimental results, HV - V and HV - λ results were also compared with the previous work.


JOM ◽  
2015 ◽  
Vol 67 (8) ◽  
pp. 1886-1895
Author(s):  
JianFei Zhang ◽  
Jun Shen ◽  
HuiPing Ren ◽  
JiChun Yang ◽  
Lin Chen ◽  
...  

1984 ◽  
Vol 34 ◽  
Author(s):  
Edward Fras ◽  
Edward Guzik ◽  
Antoni Karamara

ABSTRACTThe paper present the results of investigation into the directional solidification of Fe-C-Cr alloys containing about 30% Cr and various contents of carbon. The main types of the structure of these alloys were given and the zone of a coupled growth of the eutectic was determined as well as an effect of the growth rate on the interfacial distance λ and on the tensile strengthof these alloys. It was proved that the additions of titanium and cerium considerably reduce the distance λ and increase the tensile strength, which in the case of an Fe-Cr-C-Ce alloy can reach a value of about 3250 MPa. The alloys solidified in the form of bars and plates which also enabled the determination of an effect of angle between the axis of the carbide fibres and the direction of loading on the ultimate tensile strength. of these alloys.


Sign in / Sign up

Export Citation Format

Share Document