The effects of microstructure and growth rate on microhardness, tensile strength, and electrical resistivity for directionally solidified Al–Ni–Fe alloys

2016 ◽  
Vol 660 ◽  
pp. 23-31 ◽  
Author(s):  
Sevda Engin ◽  
Uğur Büyük ◽  
Necmettin Maraşlı
2022 ◽  
Vol 327 ◽  
pp. 82-97
Author(s):  
He Qin ◽  
Guang Yu Yang ◽  
Shi Feng Luo ◽  
Tong Bai ◽  
Wan Qi Jie

Microstructures and mechanical properties of directionally solidified Mg-xGd (5.21, 7.96 and 9.58 wt.%) alloys were investigated at a wide range of growth rates (V = 10-200 μm/s) under the constant temperature gradient (G = 30 K/mm). The results showed that when the growth rate was 10 μm/s, different interface morphologies were observed in three tested alloys: cellular morphology for Mg-5.21Gd alloy, a mixed morphology of cellular structure and dendritic structure for Mg-7.96Gd alloy and dendrite morphology for Mg-9.58Gd alloy, respectively. Upon further increasing the growth rate, only dendrite morphology was exhibited in all experimental alloys. The microstructural parameters (λ1, λ2) decreased with increasing the growth rate for all the experimental alloy, and the measured λ1 and λ2 values were in good agreement with Trivedi model and Kattamis-Flemings model, respectively. Vickers hardness and the ultimate tensile strength increased with the increase of the growth rate and Gd content, while the elongation decreased gradually. Furthermore, the relationships between the hardness, ultimate tensile strength, the growth rate and the microstructural parameters were discussed and compared with the previous experimental results.


2012 ◽  
Vol 90 (12) ◽  
pp. 1209-1221 ◽  
Author(s):  
A.K. Patidar ◽  
R.K. Pensia ◽  
V. Shrivastava

The problem of radiative instability of homogeneous rotating partially ionized plasma incorporating viscosity, porosity, and electron inertia in the presence of a magnetic field is investigated. A general dispersion relation is obtained using normal mode analysis with the help of relevant linearized perturbation equations of the problem. The modified Jeans criterion of instability is obtained. The conditions of Jeans instabilities are discussed in the different cases of interest. It is found that the simultaneous effect of viscosity, rotation, finite conductivity, and porosity of the medium does not essentially change the Jeans criterion of instability. It is also found that the presence of arbitrary radiative heat-loss function and thermal conductivity modified the conditions of Jeans instability for longitudinal propagation. It is found that, for longitudinal propagation, the conditions of radiative instability are independent of magnetic field, viscosity, rotation, finite electrical resistivity, and electron inertia, but for the transverse mode of propagation it depends upon finite electrical resistivity and strength of magnetic field and is independent of viscosity, electron inertia, and rotation. From the curves we find that viscosity has a stabilizing effect on the growth rate of instability but the thermal conductivity and density-dependent heat-loss function has a destabilizing effect on the instability growth rate.


2012 ◽  
Vol 730-732 ◽  
pp. 829-834
Author(s):  
Adrina P. Silva ◽  
Pedro R. Goulart ◽  
José Eduardo Spinelli ◽  
Amauri Garcia

In the present study a hypomonotectic Al-0.9wt%Pb alloy was directionally solidified under transient heat flow conditions and the microstructure evolution was analyzed. The solidification thermal parameters such as the growth rate, the cooling rate and the temperature gradient were experimentally determined by cooling curves recorded by thermocouples positioned along the casting length. The monotectic structure was characterized by metallography and a microstructural transition was observed. From the casting cooled surface up to a certain position in the casting the microstructure was characterized by well-distributed Pb-rich droplets in the aluminum-rich matrix, followed by a mixture of fibers and strings of pearls from this point to the top of the casting. The interphase spacing (λ) and the diameter of Pb-rich particles were also measured along the casting length and experimental growth laws relating these microstructural features to the experimental thermal parameters are proposed.


2004 ◽  
Vol 449-452 ◽  
pp. 645-648
Author(s):  
Si Young Chang ◽  
Sang Woong Lee ◽  
Jin Chun Kim ◽  
Young Seok Kim ◽  
Dong Hyuk Shin

The commercial AZ31 and AZ61 Mg alloys were subjected to equal channel angular pressing (ECAP) after hot rolling at 673 K. The hot-rolled AZ31 alloy could be ECA pressed at 493 K. The 4 ECA pressed AZ31 alloy revealed the microstructure of dynamically recrystallized grains with a grain size in range of 1 to 10μm. Despite the dynamic recrystallization during ECAP at higher temperatures ( > 1/2 Tm), the yield stress and tensile strength of AZ31 and AZ61 alloys drastically increased after 1 pressing. The yield stress gradually decreased with increasing the number of pressings, which contrasts with the behavior of the ECA pressed Al and Fe alloys, while the tensile strength increased slightly. In particular, the alloys showed nearly 3 times higher elongation than as-annealed one after 4 ECAPs, without sacrificing the tensile strength. These tensile deformation characteristics were explained based on the observation of the deformed microstructure in the vicinit of fracture surface.


1982 ◽  
Vol 70 (1) ◽  
pp. 11-15 ◽  
Author(s):  
P. Pureur ◽  
J. V. Kunzler ◽  
W. H. Schreiner ◽  
D. E. Brandão

Sign in / Sign up

Export Citation Format

Share Document